forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrounding.jl
328 lines (292 loc) · 12.3 KB
/
rounding.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
# This file is a part of Julia. License is MIT: https://julialang.org/license
# Small sanity tests to ensure changing the rounding of float functions work
using Base.MathConstants
using Test
@testset "Float64 checks" begin
# a + b returns a number exactly between prevfloat(1.) and 1., so its
# final result depends strongly on the utilized rounding direction.
a = prevfloat(0.5)
b = 0.5
c = 0x1p-54
d = prevfloat(1.)
@testset "Default rounding direction, RoundNearest" begin
@test a + b === 1.
@test - a - b === -1.
@test a - b === -c
@test b - a === c
end
end
@testset "Float32 checks" begin
a32 = prevfloat(0.5f0)
b32 = 0.5f0
c32 = (1.f0 - prevfloat(1.f0))/2
d32 = prevfloat(1.0f0)
@testset "Default rounding direction, RoundNearest" begin
@test a32 + b32 === 1.0f0
@test - a32 - b32 === -1.0f0
@test a32 - b32 === -c32
@test b32 - a32 === c32
end
end
@testset "convert with rounding" begin
for v = [sqrt(2),-1/3,nextfloat(1.0),prevfloat(1.0),nextfloat(-1.0),
prevfloat(-1.0),nextfloat(0.0),prevfloat(0.0)]
pn = Float32(v,RoundNearest)
@test pn == convert(Float32,v)
pz = Float32(v,RoundToZero)
@test abs(pz) <= abs(v) < nextfloat(abs(pz))
@test signbit(pz) == signbit(v)
pd = Float32(v,RoundDown)
@test pd <= v < nextfloat(pd)
pu = Float32(v,RoundUp)
@test prevfloat(pu) < v <= pu
@test pn == pd || pn == pu
@test v > 0 ? pz == pd : pz == pu
@test pu - pd == eps(pz)
end
for T in [Float32,Float64]
for v in [sqrt(big(2.0)),-big(1.0)/big(3.0),nextfloat(big(1.0)),
prevfloat(big(1.0)),nextfloat(big(0.0)),prevfloat(big(0.0)),
pi,ℯ,eulergamma,catalan,golden,
typemax(Int64),typemax(UInt64),typemax(Int128),typemax(UInt128),0xa2f30f6001bb2ec6]
pn = T(v,RoundNearest)
@test pn == convert(T,BigFloat(v))
pz = T(v,RoundToZero)
@test pz == setrounding(()->convert(T,BigFloat(v)), BigFloat, RoundToZero)
pd = T(v,RoundDown)
@test pd == setrounding(()->convert(T,BigFloat(v)), BigFloat, RoundDown)
pu = T(v,RoundUp)
@test pu == setrounding(()->convert(T,BigFloat(v)), BigFloat, RoundUp)
@test pn == pd || pn == pu
@test v > 0 ? pz == pd : pz == pu
@test isinf(pu) || pu - pd == eps(pz)
end
end
end
@testset "fenv" begin
@test Base.Rounding.from_fenv(Base.Rounding.to_fenv(RoundNearest)) == RoundNearest
@test Base.Rounding.from_fenv(Base.Rounding.to_fenv(RoundToZero)) == RoundToZero
@test Base.Rounding.from_fenv(Base.Rounding.to_fenv(RoundUp)) == RoundUp
@test Base.Rounding.from_fenv(Base.Rounding.to_fenv(RoundDown)) == RoundDown
@test_throws ArgumentError Base.Rounding.from_fenv(-99)
end
@testset "round error throwing" begin
badness = 1//0
@test_throws DivideError round(Int64,badness,RoundNearestTiesAway)
@test_throws DivideError round(Int64,badness,RoundNearestTiesUp)
end
@testset "rounding properties" for Tf in [Float16,Float32,Float64]
# these should hold for all u, but we just test the smallest and largest
# of each binade
for i in exponent(floatmin(Tf)):exponent(floatmax(Tf))
for u in [ldexp(Tf(1.0), i), -ldexp(Tf(1.0), i),
ldexp(prevfloat(Tf(2.0)), i), -ldexp(prevfloat(Tf(2.0)), i)]
r = round(u, RoundNearest)
if isfinite(u)
@test isfinite(r)
@test isinteger(r)
@test abs(r-u) < 0.5 || abs(r-u) == 0.5 && isinteger(r/2)
@test signbit(u) == signbit(r)
else
@test u === r
end
r = round(u, RoundNearestTiesAway)
if isfinite(u)
@test isfinite(r)
@test isinteger(r)
@test abs(r-u) < 0.5 || (r-u) == copysign(0.5,u)
@test signbit(u) == signbit(r)
else
@test u === r
end
r = round(u, RoundNearestTiesUp)
if isfinite(u)
@test isfinite(r)
@test isinteger(r)
@test -0.5 < r-u <= 0.5
@test signbit(u) == signbit(r)
else
@test u === r
end
end
end
end
@testset "rounding difficult values" begin
for x = Int64(2)^53-10:Int64(2)^53+10
y = Float64(x)
i = trunc(Int64,y)
@test Int64(trunc(y)) == i
@test Int64(round(y)) == i
@test Int64(floor(y)) == i
@test Int64(ceil(y)) == i
@test round(Int64,y) == i
@test floor(Int64,y) == i
@test ceil(Int64,y) == i
end
for x = 2^24-10:2^24+10
y = Float32(x)
i = trunc(Int,y)
@test Int(trunc(y)) == i
@test Int(round(y)) == i
@test Int(floor(y)) == i
@test Int(ceil(y)) == i
@test round(Int,y) == i
@test floor(Int,y) == i
@test ceil(Int,y) == i
end
# rounding vectors
let ≈(x,y) = x==y && typeof(x)==typeof(y)
for t in [Float32,Float64]
# try different vector lengths
for n in [0,3,255,256]
r = (1:n) .- div(n,2)
y = t[x/4 for x in r]
@test trunc.(y) ≈ t[div(i,4) for i in r]
@test floor.(y) ≈ t[i>>2 for i in r]
@test ceil.(y) ≈ t[(i+3)>>2 for i in r]
@test round.(y) ≈ t[(i+1+isodd(i>>2))>>2 for i in r]
@test broadcast(x -> round(x, RoundNearestTiesAway), y) ≈ t[(i+1+(i>=0))>>2 for i in r]
@test broadcast(x -> round(x, RoundNearestTiesUp), y) ≈ t[(i+2)>>2 for i in r]
end
end
end
@test_throws InexactError round(Int,Inf)
@test_throws InexactError round(Int,NaN)
@test round(Int,2.5) == 2
@test round(Int,1.5) == 2
@test round(Int,-2.5) == -2
@test round(Int,-1.5) == -2
@test round(Int,2.5,RoundNearestTiesAway) == 3
@test round(Int,1.5,RoundNearestTiesAway) == 2
@test round(Int,2.5,RoundNearestTiesUp) == 3
@test round(Int,1.5,RoundNearestTiesUp) == 2
@test round(Int,-2.5,RoundNearestTiesAway) == -3
@test round(Int,-1.5,RoundNearestTiesAway) == -2
@test round(Int,-2.5,RoundNearestTiesUp) == -2
@test round(Int,-1.5,RoundNearestTiesUp) == -1
@test round(Int,-1.9) == -2
@test_throws InexactError round(Int64, 9.223372036854776e18)
@test round(Int64, 9.223372036854775e18) == 9223372036854774784
@test_throws InexactError round(Int64, -9.223372036854778e18)
@test round(Int64, -9.223372036854776e18) == typemin(Int64)
@test_throws InexactError round(UInt64, 1.8446744073709552e19)
@test round(UInt64, 1.844674407370955e19) == 0xfffffffffffff800
@test_throws InexactError round(Int32, 2.1474836f9)
@test round(Int32, 2.1474835f9) == 2147483520
@test_throws InexactError round(Int32, -2.147484f9)
@test round(Int32, -2.1474836f9) == typemin(Int32)
@test_throws InexactError round(UInt32, 4.2949673f9)
@test round(UInt32, 4.294967f9) == 0xffffff00
for Ti in [Int,UInt]
for Tf in [Float16,Float32,Float64]
@test round(Ti,Tf(-0.0)) == 0
@test round(Ti,Tf(-0.0),RoundNearestTiesAway) == 0
@test round(Ti,Tf(-0.0),RoundNearestTiesUp) == 0
@test round(Ti, Tf(0.5)) == 0
@test round(Ti, Tf(0.5), RoundNearestTiesAway) == 1
@test round(Ti, Tf(0.5), RoundNearestTiesUp) == 1
@test round(Ti, prevfloat(Tf(0.5))) == 0
@test round(Ti, prevfloat(Tf(0.5)), RoundNearestTiesAway) == 0
@test round(Ti, prevfloat(Tf(0.5)), RoundNearestTiesUp) == 0
@test round(Ti, nextfloat(Tf(0.5))) == 1
@test round(Ti, nextfloat(Tf(0.5)), RoundNearestTiesAway) == 1
@test round(Ti, nextfloat(Tf(0.5)), RoundNearestTiesUp) == 1
@test round(Ti, Tf(-0.5)) == 0
@test round(Ti, Tf(-0.5), RoundNearestTiesUp) == 0
@test round(Ti, nextfloat(Tf(-0.5))) == 0
@test round(Ti, nextfloat(Tf(-0.5)), RoundNearestTiesAway) == 0
@test round(Ti, nextfloat(Tf(-0.5)), RoundNearestTiesUp) == 0
if Ti <: Signed
@test round(Ti, Tf(-0.5), RoundNearestTiesAway) == -1
@test round(Ti, prevfloat(Tf(-0.5))) == -1
@test round(Ti, prevfloat(Tf(-0.5)), RoundNearestTiesAway) == -1
@test round(Ti, prevfloat(Tf(-0.5)), RoundNearestTiesUp) == -1
else
@test_throws InexactError round(Ti, Tf(-0.5), RoundNearestTiesAway)
@test_throws InexactError round(Ti, prevfloat(Tf(-0.5)))
@test_throws InexactError round(Ti, prevfloat(Tf(-0.5)), RoundNearestTiesAway)
@test_throws InexactError round(Ti, prevfloat(Tf(-0.5)), RoundNearestTiesUp)
end
end
end
# numbers that can't be rounded by trunc(x+0.5)
@test round(Int64, 2.0^52 + 1) == 4503599627370497
@test round(Int32, 2.0f0^23 + 1) == 8388609
end
# custom rounding and significant-digit ops
@testset "rounding to digits relative to the decimal point" begin
@test round(pi) ≈ 3.
@test round(pi, base=10) ≈ 3.
@test round(pi, digits=0) ≈ 3.
@test round(pi, digits=1) ≈ 3.1
@test round(pi, digits=3, base=2) ≈ 3.125
@test round(pi, sigdigits=1) ≈ 3.
@test round(pi, sigdigits=3) ≈ 3.14
@test round(pi, sigdigits=4, base=2) ≈ 3.25
@test round(big(pi)) ≈ big"3."
@test round(big(pi), digits=0) ≈ big"3."
@test round(big(pi), digits=1) ≈ big"3.1"
@test round(big(pi), digits=3, base=2) ≈ big"3.125"
@test round(big(pi), sigdigits=1) ≈ big"3."
@test round(big(pi), sigdigits=3) ≈ big"3.14"
@test round(big(pi), sigdigits=4, base=2) ≈ big"3.25"
@test round(10*pi, digits=-1) ≈ 30.
@test round(.1, digits=0) == 0.
@test round(-.1, digits=0) == -0.
@test isnan(round(NaN, digits=2))
@test isinf(round(Inf, digits=2))
@test isinf(round(-Inf, digits=2))
end
@testset "round vs trunc vs floor vs ceil" begin
@test round(123.456, digits=1) ≈ 123.5
@test round(-123.456, digits=1) ≈ -123.5
@test trunc(123.456, digits=1) ≈ 123.4
@test trunc(-123.456, digits=1) ≈ -123.4
@test ceil(123.456, digits=1) ≈ 123.5
@test ceil(-123.456, digits=1) ≈ -123.4
@test floor(123.456, digits=1) ≈ 123.4
@test floor(-123.456, digits=1) ≈ -123.5
end
@testset "rounding with too much (or too few) precision" begin
for x in (12345.6789, 0, -12345.6789)
y = float(x)
@test y == trunc(x, digits=1000)
@test y == round(x, digits=1000)
@test y == floor(x, digits=1000)
@test y == ceil(x, digits=1000)
end
let x = 12345.6789
@test 0.0 == trunc(x, digits=-1000)
@test 0.0 == round(x, digits=-1000)
@test 0.0 == floor(x, digits=-1000)
@test Inf == ceil(x, digits=-1000)
end
let x = -12345.6789
@test -0.0 == trunc(x, digits=-1000)
@test -0.0 == round(x, digits=-1000)
@test -Inf == floor(x, digits=-1000)
@test -0.0 == ceil(x, digits=-1000)
end
let x = 0.0
@test 0.0 == trunc(x, digits=-1000)
@test 0.0 == round(x, digits=-1000)
@test 0.0 == floor(x, digits=-1000)
@test 0.0 == ceil(x, digits=-1000)
end
end
@testset "rounding in other bases" begin
@test round(pi, digits = 2, base = 2) ≈ 3.25
@test round(pi, digits = 3, base = 2) ≈ 3.125
@test round(pi, digits = 3, base = 5) ≈ 3.144
end
@testset "vectorized trunc/round/floor/ceil with digits/base argument" begin
a = rand(2, 2, 2)
for f in (round, trunc, floor, ceil)
@test f.(a[:, 1, 1], digits=2) == map(x->f(x, digits=2), a[:, 1, 1])
@test f.(a[:, :, 1], digits=2) == map(x->f(x, digits=2), a[:, :, 1])
@test f.(a, digits=9, base = 2) == map(x->f(x, digits=9, base = 2), a)
@test f.(a[:, 1, 1], digits=9, base = 2) == map(x->f(x, digits=9, base = 2), a[:, 1, 1])
@test f.(a[:, :, 1], digits=9, base = 2) == map(x->f(x, digits=9, base = 2), a[:, :, 1])
@test f.(a, digits=9, base = 2) == map(x->f(x, digits=9, base = 2), a)
end
end