forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
llvm-propagate-addrspaces.cpp
205 lines (187 loc) · 7.37 KB
/
llvm-propagate-addrspaces.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
// This file is a part of Julia. License is MIT: https://julialang.org/license
#include <llvm/ADT/SmallPtrSet.h>
#include <llvm/Analysis/CFG.h>
#include <llvm/IR/Value.h>
#include <llvm/IR/ValueMap.h>
#include <llvm/IR/Constants.h>
#include <llvm/IR/Dominators.h>
#include <llvm/IR/Function.h>
#include <llvm/IR/Instructions.h>
#include <llvm/IR/IntrinsicInst.h>
#include <llvm/IR/InstVisitor.h>
#include <llvm/IR/CallSite.h>
#include <llvm/IR/Module.h>
#include <llvm/IR/IRBuilder.h>
#include <llvm/IR/Verifier.h>
#include <llvm/Pass.h>
#include <llvm/Support/Debug.h>
#include "llvm-version.h"
#include "codegen_shared.h"
#include "julia.h"
#define DEBUG_TYPE "propagate_julia_addrspaces"
using namespace llvm;
/* This pass performs propagation of addrspace information that is legal from
the frontend definition, but illegal by general IR semantics. In particular,
this includes:
- Changing the address space of a load/store if the base pointer is
in an untracked address space
- Commuting GEPs and addrspace casts
This is most useful for removing superflous casts that can inhibit LLVM
optimizations.
*/
struct PropagateJuliaAddrspaces : public FunctionPass, public InstVisitor<PropagateJuliaAddrspaces> {
static char ID;
DenseMap<Value *, Value *> LiftingMap;
SmallPtrSet<Value *, 4> Visited;
std::vector<Instruction *> ToDelete;
std::vector<std::pair<Instruction *, Instruction *>> ToInsert;
PropagateJuliaAddrspaces() : FunctionPass(ID) {};
public:
bool runOnFunction(Function &F) override;
Value *LiftPointer(Value *V, Type *LocTy = nullptr, Instruction *InsertPt=nullptr);
void visitStoreInst(StoreInst &SI);
void visitLoadInst(LoadInst &LI);
void visitMemSetInst(MemSetInst &MI);
void visitMemTransferInst(MemTransferInst &MTI);
};
bool PropagateJuliaAddrspaces::runOnFunction(Function &F) {
visit(F);
for (auto it : ToInsert)
it.first->insertBefore(it.second);
for (Instruction *I : ToDelete)
I->eraseFromParent();
ToInsert.clear();
ToDelete.clear();
LiftingMap.clear();
Visited.clear();
return true;
}
static unsigned getValueAddrSpace(Value *V) {
return cast<PointerType>(V->getType())->getAddressSpace();
}
static bool isSpecialAS(unsigned AS) {
return AddressSpace::FirstSpecial <= AS && AS <= AddressSpace::LastSpecial;
}
Value *PropagateJuliaAddrspaces::LiftPointer(Value *V, Type *LocTy, Instruction *InsertPt) {
SmallVector<Value *, 4> Stack;
Value *CurrentV = V;
// Follow pointer casts back, see if we're based on a pointer in
// an untracked address space, in which case we're allowed to drop
// intermediate addrspace casts.
while (true) {
Stack.push_back(CurrentV);
if (isa<BitCastInst>(CurrentV))
CurrentV = cast<BitCastInst>(CurrentV)->getOperand(0);
else if (isa<AddrSpaceCastInst>(CurrentV)) {
CurrentV = cast<AddrSpaceCastInst>(CurrentV)->getOperand(0);
if (!isSpecialAS(getValueAddrSpace(CurrentV)))
break;
}
else if (isa<GetElementPtrInst>(CurrentV)) {
if (LiftingMap.count(CurrentV)) {
CurrentV = LiftingMap[CurrentV];
break;
} else if (Visited.count(CurrentV)) {
return nullptr;
}
Visited.insert(CurrentV);
CurrentV = cast<GetElementPtrInst>(CurrentV)->getOperand(0);
} else
break;
}
if (!CurrentV->getType()->isPointerTy())
return nullptr;
if (isSpecialAS(getValueAddrSpace(CurrentV)))
return nullptr;
// Ok, we're allowed to change the address space of this load, go back and
// reconstitute any GEPs in the new address space.
for (Value *V : llvm::reverse(Stack)) {
GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V);
if (!GEP)
continue;
if (LiftingMap.count(GEP)) {
CurrentV = LiftingMap[GEP];
continue;
}
GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(GEP->clone());
ToInsert.push_back(std::make_pair(NewGEP, GEP));
Type *GEPTy = GEP->getSourceElementType();
Type *NewRetTy = cast<PointerType>(GEP->getType())->getElementType()->getPointerTo(getValueAddrSpace(CurrentV));
NewGEP->mutateType(NewRetTy);
if (cast<PointerType>(CurrentV->getType())->getElementType() != GEPTy) {
auto *BCI = new BitCastInst(CurrentV, GEPTy->getPointerTo());
ToInsert.push_back(std::make_pair(BCI, NewGEP));
CurrentV = BCI;
}
NewGEP->setOperand(GetElementPtrInst::getPointerOperandIndex(), CurrentV);
LiftingMap[GEP] = NewGEP;
CurrentV = NewGEP;
}
if (LocTy && cast<PointerType>(CurrentV->getType())->getElementType() != LocTy) {
auto *BCI = new BitCastInst(CurrentV, LocTy->getPointerTo());
ToInsert.push_back(std::make_pair(BCI, InsertPt));
CurrentV = BCI;
}
return CurrentV;
}
void PropagateJuliaAddrspaces::visitLoadInst(LoadInst &LI) {
unsigned AS = LI.getPointerAddressSpace();
if (!isSpecialAS(AS))
return;
Value *Replacement = LiftPointer(LI.getPointerOperand(), LI.getType(), &LI);
if (!Replacement)
return;
LI.setOperand(LoadInst::getPointerOperandIndex(), Replacement);
}
void PropagateJuliaAddrspaces::visitStoreInst(StoreInst &SI) {
unsigned AS = SI.getPointerAddressSpace();
if (!isSpecialAS(AS))
return;
Value *Replacement = LiftPointer(SI.getPointerOperand(), SI.getValueOperand()->getType(), &SI);
if (!Replacement)
return;
SI.setOperand(StoreInst::getPointerOperandIndex(), Replacement);
}
void PropagateJuliaAddrspaces::visitMemSetInst(MemSetInst &MI) {
unsigned AS = MI.getDestAddressSpace();
if (!isSpecialAS(AS))
return;
Value *Replacement = LiftPointer(MI.getRawDest());
if (!Replacement)
return;
Value *TheFn = Intrinsic::getDeclaration(MI.getModule(), Intrinsic::memset,
{Replacement->getType(), MI.getOperand(1)->getType()});
MI.setCalledFunction(TheFn);
MI.setArgOperand(0, Replacement);
}
void PropagateJuliaAddrspaces::visitMemTransferInst(MemTransferInst &MTI) {
unsigned DestAS = MTI.getDestAddressSpace();
unsigned SrcAS = MTI.getSourceAddressSpace();
if (!isSpecialAS(DestAS) && !isSpecialAS(SrcAS))
return;
Value *Dest = MTI.getRawDest();
if (isSpecialAS(DestAS)) {
Value *Replacement = LiftPointer(Dest, cast<PointerType>(Dest->getType())->getElementType(), &MTI);
if (Replacement)
Dest = Replacement;
}
Value *Src = MTI.getRawSource();
if (isSpecialAS(SrcAS)) {
Value *Replacement = LiftPointer(Src, cast<PointerType>(Src->getType())->getElementType(), &MTI);
if (Replacement)
Src = Replacement;
}
if (Dest == MTI.getRawDest() && Src == MTI.getRawSource())
return;
Value *TheFn = Intrinsic::getDeclaration(MTI.getModule(), MTI.getIntrinsicID(),
{Dest->getType(), Src->getType(),
MTI.getOperand(2)->getType()});
MTI.setCalledFunction(TheFn);
MTI.setArgOperand(0, Dest);
MTI.setArgOperand(1, Src);
}
char PropagateJuliaAddrspaces::ID = 0;
static RegisterPass<PropagateJuliaAddrspaces> X("PropagateJuliaAddrspaces", "Propagate (non-)rootedness information", false, false);
Pass *createPropagateJuliaAddrspaces() {
return new PropagateJuliaAddrspaces();
}