forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
precompile.c
402 lines (363 loc) · 14.1 KB
/
precompile.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
// This file is a part of Julia. License is MIT: https://julialang.org/license
/*
precompile.c
Generating compiler output artifacts (object files, etc.)
*/
#include <stdlib.h>
#include "julia.h"
#include "julia_internal.h"
#include "julia_assert.h"
#ifdef __cplusplus
extern "C" {
#endif
JL_DLLEXPORT int jl_generating_output(void)
{
return jl_options.outputo || jl_options.outputbc || jl_options.outputunoptbc || jl_options.outputji;
}
void jl_precompile(int all);
void jl_write_compiler_output(void)
{
if (!jl_generating_output()) {
if (jl_options.outputjitbc)
jl_dump_native(NULL, jl_options.outputjitbc, NULL, NULL, 0);
return;
}
if (!jl_options.incremental)
jl_precompile(jl_options.compile_enabled == JL_OPTIONS_COMPILE_ALL);
if (!jl_module_init_order) {
jl_printf(JL_STDERR, "WARNING: --output requested, but no modules defined during run\n");
return;
}
if (jl_options.outputjitbc) {
jl_printf(JL_STDERR, "WARNING: --output-jit-bc is meaningless with options for dumping sysimage data\n");
}
jl_array_t *worklist = jl_module_init_order;
JL_GC_PUSH1(&worklist);
jl_module_init_order = jl_alloc_vec_any(0);
int i, l = jl_array_len(worklist);
for (i = 0; i < l; i++) {
jl_value_t *m = jl_ptrarrayref(worklist, i);
jl_value_t *f = jl_get_global((jl_module_t*)m, jl_symbol("__init__"));
if (f) {
jl_array_ptr_1d_push(jl_module_init_order, m);
// TODO: this would be better handled if moved entirely to jl_precompile
// since it's a slightly duplication of effort
jl_value_t *tt = jl_is_type(f) ? (jl_value_t*)jl_wrap_Type(f) : jl_typeof(f);
JL_GC_PUSH1(&tt);
tt = (jl_value_t*)jl_apply_tuple_type_v(&tt, 1);
jl_compile_hint((jl_tupletype_t*)tt);
JL_GC_POP();
}
}
if (jl_options.incremental) {
if (jl_options.outputji)
if (jl_save_incremental(jl_options.outputji, worklist))
jl_exit(1);
if (jl_options.outputbc || jl_options.outputunoptbc)
jl_printf(JL_STDERR, "WARNING: incremental output to a .bc file is not implemented\n");
if (jl_options.outputo)
jl_printf(JL_STDERR, "WARNING: incremental output to a .o file is not implemented\n");
}
else {
ios_t *s = NULL;
if (jl_options.outputo || jl_options.outputbc || jl_options.outputunoptbc)
s = jl_create_system_image();
if (jl_options.outputji) {
if (s == NULL) {
jl_save_system_image(jl_options.outputji);
}
else {
ios_t f;
if (ios_file(&f, jl_options.outputji, 1, 1, 1, 1) == NULL)
jl_errorf("cannot open system image file \"%s\" for writing", jl_options.outputji);
ios_write(&f, (const char*)s->buf, (size_t)s->size);
ios_close(&f);
}
}
if (jl_options.outputo || jl_options.outputbc || jl_options.outputunoptbc) {
assert(s);
jl_dump_native(jl_options.outputbc,
jl_options.outputunoptbc,
jl_options.outputo,
(const char*)s->buf, (size_t)s->size);
}
}
for (size_t i = 0; i < jl_current_modules.size; i += 2) {
if (jl_current_modules.table[i + 1] != HT_NOTFOUND) {
jl_printf(JL_STDERR, "\nWARNING: detected unclosed module: ");
jl_static_show(JL_STDERR, (jl_value_t*)jl_current_modules.table[i]);
jl_printf(JL_STDERR, "\n ** incremental compilation may be broken for this module **\n\n");
}
}
JL_GC_POP();
}
// f{<:Union{...}}(...) is a common pattern
// and expanding the Union may give a leaf function
static void _compile_all_tvar_union(jl_value_t *methsig)
{
if (!jl_is_unionall(methsig) && jl_is_dispatch_tupletype(methsig)) {
// usually can create a specialized version of the function,
// if the signature is already a dispatch type
if (jl_compile_hint((jl_tupletype_t*)methsig))
return;
}
int tvarslen = jl_subtype_env_size(methsig);
jl_value_t *sigbody = methsig;
jl_value_t **roots;
JL_GC_PUSHARGS(roots, 1 + 2 * tvarslen);
jl_value_t **env = roots + 1;
int *idx = (int*)alloca(sizeof(int) * tvarslen);
int i;
for (i = 0; i < tvarslen; i++) {
assert(jl_is_unionall(sigbody));
idx[i] = 0;
env[2 * i] = (jl_value_t*)((jl_unionall_t*)sigbody)->var;
env[2 * i + 1] = jl_bottom_type; // initialize the list with Union{}, since T<:Union{} is always a valid option
sigbody = ((jl_unionall_t*)sigbody)->body;
}
for (i = 0; i < tvarslen; /* incremented by inner loop */) {
jl_value_t **sig = &roots[0];
JL_TRY {
// TODO: wrap in UnionAll for each tvar in env[2*i + 1] ?
// currently doesn't matter much, since jl_compile_hint doesn't work on abstract types
*sig = (jl_value_t*)jl_instantiate_type_with(sigbody, env, tvarslen);
}
JL_CATCH {
goto getnext; // sigh, we found an invalid type signature. should we warn the user?
}
if (!jl_has_concrete_subtype(*sig))
goto getnext; // signature wouldn't be callable / is invalid -- skip it
if (jl_is_concrete_type(*sig)) {
if (jl_compile_hint((jl_tupletype_t *)*sig))
goto getnext; // success
}
getnext:
for (i = 0; i < tvarslen; i++) {
jl_tvar_t *tv = (jl_tvar_t*)env[2 * i];
if (jl_is_uniontype(tv->ub)) {
size_t l = jl_count_union_components(tv->ub);
size_t j = idx[i];
if (j == l) {
env[2 * i + 1] = jl_bottom_type;
idx[i] = 0;
}
else {
jl_value_t *ty = jl_nth_union_component(tv->ub, j);
if (!jl_is_concrete_type(ty))
ty = (jl_value_t*)jl_new_typevar(tv->name, tv->lb, ty);
env[2 * i + 1] = ty;
idx[i] = j + 1;
break;
}
}
else {
env[2 * i + 1] = (jl_value_t*)tv;
}
}
}
JL_GC_POP();
}
// f(::Union{...}, ...) is a common pattern
// and expanding the Union may give a leaf function
static void _compile_all_union(jl_value_t *sig)
{
jl_tupletype_t *sigbody = (jl_tupletype_t*)jl_unwrap_unionall(sig);
size_t count_unions = 0;
size_t i, l = jl_svec_len(sigbody->parameters);
jl_svec_t *p = NULL;
jl_value_t *methsig = NULL;
for (i = 0; i < l; i++) {
jl_value_t *ty = jl_svecref(sigbody->parameters, i);
if (jl_is_uniontype(ty))
++count_unions;
else if (ty == jl_bottom_type)
return; // why does this method exist?
else if (jl_is_datatype(ty) && !jl_has_free_typevars(ty) &&
((!jl_is_kind(ty) && ((jl_datatype_t*)ty)->isconcretetype) ||
((jl_datatype_t*)ty)->name == jl_type_typename))
return; // no amount of union splitting will make this a leaftype signature
}
if (count_unions == 0 || count_unions >= 6) {
_compile_all_tvar_union(sig);
return;
}
int *idx = (int*)alloca(sizeof(int) * count_unions);
for (i = 0; i < count_unions; i++) {
idx[i] = 0;
}
JL_GC_PUSH2(&p, &methsig);
int idx_ctr = 0, incr = 0;
while (!incr) {
p = jl_alloc_svec_uninit(l);
for (i = 0, idx_ctr = 0, incr = 1; i < l; i++) {
jl_value_t *ty = jl_svecref(sigbody->parameters, i);
if (jl_is_uniontype(ty)) {
assert(idx_ctr < count_unions);
size_t l = jl_count_union_components(ty);
size_t j = idx[idx_ctr];
jl_svecset(p, i, jl_nth_union_component(ty, j));
++j;
if (incr) {
if (j == l) {
idx[idx_ctr] = 0;
}
else {
idx[idx_ctr] = j;
incr = 0;
}
}
++idx_ctr;
}
else {
jl_svecset(p, i, ty);
}
}
methsig = (jl_value_t*)jl_apply_tuple_type(p);
methsig = jl_rewrap_unionall(methsig, sig);
_compile_all_tvar_union(methsig);
}
JL_GC_POP();
}
static void _compile_all_deq(jl_array_t *found)
{
int found_i, found_l = jl_array_len(found);
jl_printf(JL_STDERR, "found %d uncompiled methods for compile-all\n", (int)found_l);
jl_method_instance_t *mi = NULL;
jl_value_t *src = NULL;
JL_GC_PUSH2(&mi, &src);
for (found_i = 0; found_i < found_l; found_i++) {
if (found_i % (1 + found_l / 300) == 0 || found_i == found_l - 1) // show 300 progress steps, to show progress without overwhelming log files
jl_printf(JL_STDERR, " %d / %d\r", found_i + 1, found_l);
jl_typemap_entry_t *ml = (jl_typemap_entry_t*)jl_array_ptr_ref(found, found_i);
jl_method_t *m = ml->func.method;
if (m->source == NULL) // TODO: generic implementations of generated functions
continue;
mi = jl_get_unspecialized(mi);
assert(mi == m->unspecialized); // make sure we didn't get tricked by a generated function, since we can't handle those
jl_code_instance_t *ucache = jl_get_method_inferred(mi, (jl_value_t*)jl_any_type, 1, ~(size_t)0);
if (ucache->invoke != NULL)
continue;
src = m->source;
// TODO: we could now enable storing inferred function pointers in the `unspecialized` cache
//src = jl_type_infer(mi, jl_world_counter, 1);
//if (ucache->invoke != NULL)
// continue;
// first try to create leaf signatures from the signature declaration and compile those
_compile_all_union((jl_value_t*)ml->sig);
// then also compile the generic fallback
jl_compile_linfo(mi, (jl_code_info_t*)src, 1, &jl_default_cgparams);
assert(ucache->functionObjectsDecls.functionObject != NULL);
}
JL_GC_POP();
jl_printf(JL_STDERR, "\n");
}
static int compile_all_enq__(jl_typemap_entry_t *ml, void *env)
{
jl_array_t *found = (jl_array_t*)env;
// method definition -- compile template field
jl_method_t *m = ml->func.method;
if (m->source &&
(!m->unspecialized ||
!m->unspecialized->cache ||
(m->unspecialized->cache->functionObjectsDecls.functionObject == NULL &&
m->unspecialized->cache->invoke == NULL))) {
// found a lambda that still needs to be compiled
jl_array_ptr_1d_push(found, (jl_value_t*)ml);
}
return 1;
}
static void compile_all_enq_(jl_methtable_t *mt, void *env)
{
jl_typemap_visitor(mt->defs, compile_all_enq__, env);
}
void jl_foreach_reachable_mtable(void (*visit)(jl_methtable_t *mt, void *env), void *env);
static void jl_compile_all_defs(void)
{
// this "found" array will contain
// TypeMapEntries for Methods and MethodInstances that need to be compiled
jl_array_t *m = jl_alloc_vec_any(0);
JL_GC_PUSH1(&m);
while (1) {
jl_foreach_reachable_mtable(compile_all_enq_, m);
size_t changes = jl_array_len(m);
if (!changes)
break;
_compile_all_deq(m);
jl_array_del_end(m, changes);
}
JL_GC_POP();
}
static int precompile_enq_all_cache__(jl_typemap_entry_t *l, void *closure)
{
jl_array_ptr_1d_push((jl_array_t*)closure, (jl_value_t*)l->func.linfo);
return 1;
}
static int precompile_enq_specialization_(jl_typemap_entry_t *l, void *closure)
{
jl_method_instance_t *mi = l->func.linfo;
assert(jl_is_method_instance(mi));
jl_code_instance_t *codeinst = mi->cache;
while (codeinst) {
int do_compile = 0;
if (codeinst->functionObjectsDecls.functionObject == NULL && codeinst->invoke != jl_fptr_const_return) {
if (codeinst->inferred && codeinst->inferred != jl_nothing &&
jl_ast_flag_inferred((jl_array_t*)codeinst->inferred) &&
!jl_ast_flag_inlineable((jl_array_t*)codeinst->inferred)) {
do_compile = 1;
}
else if (codeinst->invoke != NULL) {
do_compile = 1;
}
}
if (do_compile) {
jl_array_ptr_1d_push((jl_array_t*)closure, (jl_value_t*)mi);
return 1;
}
codeinst = codeinst->next;
}
return 1;
}
static int precompile_enq_all_specializations__(jl_typemap_entry_t *def, void *closure)
{
jl_method_t *m = def->func.method;
if (m->name == jl_symbol("__init__") && jl_is_dispatch_tupletype(m->sig)) {
// ensure `__init__()` gets strongly-hinted, specialized, and compiled
jl_method_instance_t *mi = jl_specializations_get_linfo(m, m->sig, jl_emptysvec);
jl_array_ptr_1d_push((jl_array_t*)closure, (jl_value_t*)mi);
}
else {
jl_typemap_visitor(def->func.method->specializations, precompile_enq_specialization_, closure);
}
return 1;
}
static void precompile_enq_all_specializations_(jl_methtable_t *mt, void *env)
{
jl_typemap_visitor(mt->defs, precompile_enq_all_specializations__, env);
jl_typemap_visitor(mt->cache, precompile_enq_all_cache__, env);
}
void jl_compile_now(jl_method_instance_t *mi);
static void jl_compile_specializations(void)
{
// this "found" array will contain function
// type signatures that were inferred but haven't been compiled
jl_array_t *m = jl_alloc_vec_any(0);
JL_GC_PUSH1(&m);
jl_foreach_reachable_mtable(precompile_enq_all_specializations_, m);
// TODO: Ensure stable ordering to make inference problems more reproducible (#29923)
//jl_sort_types((jl_value_t**)jl_array_data(m), jl_array_len(m));
size_t i, l = jl_array_len(m);
for (i = 0; i < l; i++) {
jl_method_instance_t *mi = (jl_method_instance_t*)jl_array_ptr_ref(m, i);
jl_compile_now(mi);
}
JL_GC_POP();
}
void jl_precompile(int all)
{
if (all)
jl_compile_all_defs();
jl_compile_specializations();
}
#ifdef __cplusplus
}
#endif