forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdiv.jl
268 lines (227 loc) · 8.17 KB
/
div.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# This file is a part of Julia. License is MIT: https://julialang.org/license
# Div is truncating by default
"""
div(x, y, r::RoundingMode=RoundToZero)
The quotient from Euclidean division. Computes x/y, rounded to an integer according
to the rounding mode `r`. In other words, the quantity
round(x/y,r)
without any intermediate rounding.
See also: [`fld`](@ref), [`cld`](@ref) which are special cases of this function
# Examples:
```jldoctest
julia> div(4, 3, RoundDown) # Matches fld(4, 3)
1
julia> div(4, 3, RoundUp) # Matches cld(4, 3)
2
julia> div(5, 2, RoundNearest)
2
julia> div(5, 2, RoundNearestTiesAway)
3
julia> div(-5, 2, RoundNearest)
-2
julia> div(-5, 2, RoundNearestTiesAway)
-3
julia> div(-5, 2, RoundNearestTiesUp)
-2
```
"""
div(x, y, r::RoundingMode)
div(a, b) = div(a, b, RoundToZero)
"""
rem(x, y, r::RoundingMode=RoundToZero)
Compute the remainder of `x` after integer division by `y`, with the quotient rounded
according to the rounding mode `r`. In other words, the quantity
x - y*round(x/y,r)
without any intermediate rounding.
- if `r == RoundNearest`, then the result is exact, and in the interval
``[-|y|/2, |y|/2]``. See also [`RoundNearest`](@ref).
- if `r == RoundToZero` (default), then the result is exact, and in the interval
``[0, |y|)`` if `x` is positive, or ``(-|y|, 0]`` otherwise. See also [`RoundToZero`](@ref).
- if `r == RoundDown`, then the result is in the interval ``[0, y)`` if `y` is positive, or
``(y, 0]`` otherwise. The result may not be exact if `x` and `y` have different signs, and
`abs(x) < abs(y)`. See also [`RoundDown`](@ref).
- if `r == RoundUp`, then the result is in the interval `(-y,0]` if `y` is positive, or
`[0,-y)` otherwise. The result may not be exact if `x` and `y` have the same sign, and
`abs(x) < abs(y)`. See also [`RoundUp`](@ref).
"""
rem(x, y, r::RoundingMode)
# TODO: Make these primitive and have the two-argument version call these
rem(x, y, ::RoundingMode{:ToZero}) = rem(x,y)
rem(x, y, ::RoundingMode{:Down}) = mod(x,y)
rem(x, y, ::RoundingMode{:Up}) = mod(x,-y)
"""
fld(x, y)
Largest integer less than or equal to `x/y`. Equivalent to `div(x, y, RoundDown)`.
See also: [`div`](@ref)
# Examples
```jldoctest
julia> fld(7.3,5.5)
1.0
```
"""
fld(a, b) = div(a, b, RoundDown)
"""
cld(x, y)
Smallest integer larger than or equal to `x/y`. Equivalent to `div(x, y, RoundUp)`.
See also: [`div`](@ref)
# Examples
```jldoctest
julia> cld(5.5,2.2)
3.0
```
"""
cld(a, b) = div(a, b, RoundUp)
# divrem
"""
divrem(x, y, r::RoundingMode=RoundToZero)
The quotient and remainder from Euclidean division.
Equivalent to `(div(x,y,r), rem(x,y,r))`. Equivalently, with the the default
value of `r`, this call is equivalent to `(x÷y, x%y)`.
# Examples
```jldoctest
julia> divrem(3,7)
(0, 3)
julia> divrem(7,3)
(2, 1)
```
"""
divrem(x, y) = divrem(x, y, RoundToZero)
divrem(a, b, r::RoundingMode) = (div(a, b, r), rem(a, b, r))
function divrem(x::Integer, y::Integer, rnd::typeof(RoundNearest))
(q, r) = divrem(x, y)
if x >= 0
if y >= 0
r >= (y÷2) + (isodd(y) | iseven(q)) ? (q+true, r-y) : (q, r)
else
r >= -(y÷2) + (isodd(y) | iseven(q)) ? (q-true, r+y) : (q, r)
end
else
if y >= 0
r <= -signed(y÷2) - (isodd(y) | iseven(q)) ? (q-true, r+y) : (q, r)
else
r <= (y÷2) - (isodd(y) | iseven(q)) ? (q+true, r-y) : (q, r)
end
end
end
function divrem(x::Integer, y::Integer, rnd:: typeof(RoundNearestTiesAway))
(q, r) = divrem(x, y)
if x >= 0
if y >= 0
r >= (y÷2) + isodd(y) ? (q+true, r-y) : (q, r)
else
r >= -(y÷2) + isodd(y) ? (q-true, r+y) : (q, r)
end
else
if y >= 0
r <= -signed(y÷2) - isodd(y) ? (q-true, r+y) : (q, r)
else
r <= (y÷2) - isodd(y) ? (q+true, r-y) : (q, r)
end
end
end
function divrem(x::Integer, y::Integer, rnd::typeof(RoundNearestTiesUp))
(q, r) = divrem(x, y)
if x >= 0
if y >= 0
r >= (y÷2) + isodd(y) ? (q+true, r-y) : (q, r)
else
r >= -(y÷2) + true ? (q-true, r+y) : (q, r)
end
else
if y >= 0
r <= -signed(y÷2) - true ? (q-true, r+y) : (q, r)
else
r <= (y÷2) - isodd(y) ? (q+true, r-y) : (q, r)
end
end
end
"""
fldmod(x, y)
The floored quotient and modulus after division. A convenience wrapper for
`divrem(x, y, RoundDown)`. Equivalent to `(fld(x,y), mod(x,y))`.
"""
fldmod(x,y) = divrem(x, y, RoundDown)
# We definite generic rounding methods for other rounding modes in terms of
# RoundToZero.
function div(x::Signed, y::Unsigned, ::typeof(RoundDown))
(q, r) = divrem(x, y)
q - (signbit(x) & (r != 0))
end
function div(x::Unsigned, y::Signed, ::typeof(RoundDown))
(q, r) = divrem(x, y)
q - (signbit(y) & (r != 0))
end
function div(x::Signed, y::Unsigned, ::typeof(RoundUp))
(q, r) = divrem(x, y)
q + (!signbit(x) & (r != 0))
end
function div(x::Unsigned, y::Signed, ::typeof(RoundUp))
(q, r) = divrem(x, y)
q + (!signbit(y) & (r != 0))
end
function div(x::Integer, y::Integer, rnd::Union{typeof(RoundNearest),
typeof(RoundNearestTiesAway),
typeof(RoundNearestTiesUp)})
divrem(x,y,rnd)[1]
end
# For bootstrapping purposes, we define div for integers directly. Provide the
# generic signature also
div(a::T, b::T, ::typeof(RoundToZero)) where {T<:Union{BitSigned, BitUnsigned64}} = div(a, b)
div(a::Bool, b::Bool, r::RoundingMode) = div(a, b)
# Prevent ambiguities
for rm in (RoundUp, RoundDown, RoundToZero)
@eval div(a::Bool, b::Bool, r::$(typeof(rm))) = div(a, b)
end
function div(x::Bool, y::Bool, rnd::Union{typeof(RoundNearest),
typeof(RoundNearestTiesAway),
typeof(RoundNearestTiesUp)})
div(x, y)
end
fld(a::T, b::T) where {T<:Union{Integer,AbstractFloat}} = div(a, b, RoundDown)
cld(a::T, b::T) where {T<:Union{Integer,AbstractFloat}} = div(a, b, RoundUp)
div(a::Int128, b::Int128, ::typeof(RoundToZero)) = div(a, b)
div(a::UInt128, b::UInt128, ::typeof(RoundToZero)) = div(a, b)
rem(a::Int128, b::Int128, ::typeof(RoundToZero)) = rem(a, b)
rem(a::UInt128, b::UInt128, ::typeof(RoundToZero)) = rem(a, b)
# These are kept for compatibility with external packages overriding fld/cld.
# In 2.0, packages should extend div(a,b,r) instead, in which case, these can
# be removed.
fld(x::Real, y::Real) = div(promote(x,y)..., RoundDown)
cld(x::Real, y::Real) = div(promote(x,y)..., RoundUp)
fld(x::Signed, y::Unsigned) = div(x, y, RoundDown)
fld(x::Unsigned, y::Signed) = div(x, y, RoundDown)
cld(x::Signed, y::Unsigned) = div(x, y, RoundUp)
cld(x::Unsigned, y::Signed) = div(x, y, RoundUp)
fld(x::T, y::T) where {T<:Real} = throw(MethodError(div, (x, y, RoundDown)))
cld(x::T, y::T) where {T<:Real} = throw(MethodError(div, (x, y, RoundUp)))
# Promotion
function div(x::Real, y::Real, r::RoundingMode)
typeof(x) === typeof(y) && throw(MethodError(div, (x, y, r)))
if r == RoundToZero
# For compat. Remove in 2.0.
div(promote(x, y)...)
else
div(promote(x, y)..., r)
end
end
# Integers
# fld(x,y) == div(x,y) - ((x>=0) != (y>=0) && rem(x,y) != 0 ? 1 : 0)
div(x::T, y::T, ::typeof(RoundDown)) where {T<:Unsigned} = div(x,y)
function div(x::T, y::T, ::typeof(RoundDown)) where T<:Integer
d = div(x, y, RoundToZero)
return d - (signbit(x ⊻ y) & (d * y != x))
end
# cld(x,y) = div(x,y) + ((x>0) == (y>0) && rem(x,y) != 0 ? 1 : 0)
function div(x::T, y::T, ::typeof(RoundUp)) where T<:Unsigned
d = div(x, y, RoundToZero)
return d + (d * y != x)
end
function div(x::T, y::T, ::typeof(RoundUp)) where T<:Integer
d = div(x, y, RoundToZero)
return d + (((x > 0) == (y > 0)) & (d * y != x))
end
# Real
# NOTE: C89 fmod() and x87 FPREM implicitly provide truncating float division,
# so it is used here as the basis of float div().
div(x::T, y::T, r::RoundingMode) where {T<:AbstractFloat} = convert(T,round((x-rem(x,y,r))/y))
rem(x::T, y::T, ::typeof(RoundUp)) where {T<:AbstractFloat} = convert(T,x-y*ceil(x/y))