forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfloat.jl
911 lines (777 loc) · 29 KB
/
float.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
# This file is a part of Julia. License is MIT: https://julialang.org/license
const IEEEFloat = Union{Float16, Float32, Float64}
## floating point traits ##
"""
Inf16
Positive infinity of type [`Float16`](@ref).
"""
const Inf16 = bitcast(Float16, 0x7c00)
"""
NaN16
A not-a-number value of type [`Float16`](@ref).
"""
const NaN16 = bitcast(Float16, 0x7e00)
"""
Inf32
Positive infinity of type [`Float32`](@ref).
"""
const Inf32 = bitcast(Float32, 0x7f800000)
"""
NaN32
A not-a-number value of type [`Float32`](@ref).
"""
const NaN32 = bitcast(Float32, 0x7fc00000)
const Inf64 = bitcast(Float64, 0x7ff0000000000000)
const NaN64 = bitcast(Float64, 0x7ff8000000000000)
const Inf = Inf64
"""
Inf, Inf64
Positive infinity of type [`Float64`](@ref).
"""
Inf, Inf64
const NaN = NaN64
"""
NaN, NaN64
A not-a-number value of type [`Float64`](@ref).
"""
NaN, NaN64
## conversions to floating-point ##
Float16(x::Integer) = convert(Float16, convert(Float32, x))
for t in (Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128)
@eval promote_rule(::Type{Float16}, ::Type{$t}) = Float16
end
promote_rule(::Type{Float16}, ::Type{Bool}) = Float16
for t1 in (Float32, Float64)
for st in (Int8, Int16, Int32, Int64)
@eval begin
(::Type{$t1})(x::($st)) = sitofp($t1, x)
promote_rule(::Type{$t1}, ::Type{$st}) = $t1
end
end
for ut in (Bool, UInt8, UInt16, UInt32, UInt64)
@eval begin
(::Type{$t1})(x::($ut)) = uitofp($t1, x)
promote_rule(::Type{$t1}, ::Type{$ut}) = $t1
end
end
end
(::Type{T})(x::Float16) where {T<:Integer} = T(Float32(x))
Bool(x::Real) = x==0 ? false : x==1 ? true : throw(InexactError(:Bool, Bool, x))
promote_rule(::Type{Float64}, ::Type{UInt128}) = Float64
promote_rule(::Type{Float64}, ::Type{Int128}) = Float64
promote_rule(::Type{Float32}, ::Type{UInt128}) = Float32
promote_rule(::Type{Float32}, ::Type{Int128}) = Float32
function Float64(x::UInt128)
x == 0 && return 0.0
n = 128-leading_zeros(x) # ndigits0z(x,2)
if n <= 53
y = ((x % UInt64) << (53-n)) & 0x000f_ffff_ffff_ffff
else
y = ((x >> (n-54)) % UInt64) & 0x001f_ffff_ffff_ffff # keep 1 extra bit
y = (y+1)>>1 # round, ties up (extra leading bit in case of next exponent)
y &= ~UInt64(trailing_zeros(x) == (n-54)) # fix last bit to round to even
end
d = ((n+1022) % UInt64) << 52
reinterpret(Float64, d + y)
end
function Float64(x::Int128)
x == 0 && return 0.0
s = ((x >>> 64) % UInt64) & 0x8000_0000_0000_0000 # sign bit
x = abs(x) % UInt128
n = 128-leading_zeros(x) # ndigits0z(x,2)
if n <= 53
y = ((x % UInt64) << (53-n)) & 0x000f_ffff_ffff_ffff
else
y = ((x >> (n-54)) % UInt64) & 0x001f_ffff_ffff_ffff # keep 1 extra bit
y = (y+1)>>1 # round, ties up (extra leading bit in case of next exponent)
y &= ~UInt64(trailing_zeros(x) == (n-54)) # fix last bit to round to even
end
d = ((n+1022) % UInt64) << 52
reinterpret(Float64, s | d + y)
end
function Float32(x::UInt128)
x == 0 && return 0f0
n = 128-leading_zeros(x) # ndigits0z(x,2)
if n <= 24
y = ((x % UInt32) << (24-n)) & 0x007f_ffff
else
y = ((x >> (n-25)) % UInt32) & 0x00ff_ffff # keep 1 extra bit
y = (y+one(UInt32))>>1 # round, ties up (extra leading bit in case of next exponent)
y &= ~UInt32(trailing_zeros(x) == (n-25)) # fix last bit to round to even
end
d = ((n+126) % UInt32) << 23
reinterpret(Float32, d + y)
end
function Float32(x::Int128)
x == 0 && return 0f0
s = ((x >>> 96) % UInt32) & 0x8000_0000 # sign bit
x = abs(x) % UInt128
n = 128-leading_zeros(x) # ndigits0z(x,2)
if n <= 24
y = ((x % UInt32) << (24-n)) & 0x007f_ffff
else
y = ((x >> (n-25)) % UInt32) & 0x00ff_ffff # keep 1 extra bit
y = (y+one(UInt32))>>1 # round, ties up (extra leading bit in case of next exponent)
y &= ~UInt32(trailing_zeros(x) == (n-25)) # fix last bit to round to even
end
d = ((n+126) % UInt32) << 23
reinterpret(Float32, s | d + y)
end
# Float32 -> Float16 algorithm from:
# "Fast Half Float Conversion" by Jeroen van der Zijp
# ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf
#
# With adjustments for round-to-nearest, ties to even.
#
let _basetable = Vector{UInt16}(undef, 512),
_shifttable = Vector{UInt8}(undef, 512)
for i = 0:255
e = i - 127
if e < -25 # Very small numbers map to zero
_basetable[i|0x000+1] = 0x0000
_basetable[i|0x100+1] = 0x8000
_shifttable[i|0x000+1] = 25
_shifttable[i|0x100+1] = 25
elseif e < -14 # Small numbers map to denorms
_basetable[i|0x000+1] = 0x0000
_basetable[i|0x100+1] = 0x8000
_shifttable[i|0x000+1] = -e-1
_shifttable[i|0x100+1] = -e-1
elseif e <= 15 # Normal numbers just lose precision
_basetable[i|0x000+1] = ((e+15)<<10)
_basetable[i|0x100+1] = ((e+15)<<10) | 0x8000
_shifttable[i|0x000+1] = 13
_shifttable[i|0x100+1] = 13
elseif e < 128 # Large numbers map to Infinity
_basetable[i|0x000+1] = 0x7C00
_basetable[i|0x100+1] = 0xFC00
_shifttable[i|0x000+1] = 24
_shifttable[i|0x100+1] = 24
else # Infinity and NaN's stay Infinity and NaN's
_basetable[i|0x000+1] = 0x7C00
_basetable[i|0x100+1] = 0xFC00
_shifttable[i|0x000+1] = 13
_shifttable[i|0x100+1] = 13
end
end
global const shifttable = (_shifttable...,)
global const basetable = (_basetable...,)
end
function Float16(val::Float32)
f = reinterpret(UInt32, val)
if isnan(val)
t = 0x8000 ⊻ (0x8000 & ((f >> 0x10) % UInt16))
return reinterpret(Float16, t ⊻ ((f >> 0xd) % UInt16))
end
i = ((f & ~significand_mask(Float32)) >> significand_bits(Float32)) + 1
@inbounds sh = shifttable[i]
f &= significand_mask(Float32)
# If `val` is subnormal, the tables are set up to force the
# result to 0, so the significand has an implicit `1` in the
# cases we care about.
f |= significand_mask(Float32) + 0x1
@inbounds h = (basetable[i] + (f >> sh) & significand_mask(Float16)) % UInt16
# round
# NOTE: we maybe should ignore NaNs here, but the payload is
# getting truncated anyway so "rounding" it might not matter
nextbit = (f >> (sh-1)) & 1
if nextbit != 0 && (h & 0x7C00) != 0x7C00
# Round halfway to even or check lower bits
if h&1 == 1 || (f & ((1<<(sh-1))-1)) != 0
h += UInt16(1)
end
end
reinterpret(Float16, h)
end
function Float32(val::Float16)
local ival::UInt32 = reinterpret(UInt16, val)
local sign::UInt32 = (ival & 0x8000) >> 15
local exp::UInt32 = (ival & 0x7c00) >> 10
local sig::UInt32 = (ival & 0x3ff) >> 0
local ret::UInt32
if exp == 0
if sig == 0
sign = sign << 31
ret = sign | exp | sig
else
n_bit = 1
bit = 0x0200
while (bit & sig) == 0
n_bit = n_bit + 1
bit = bit >> 1
end
sign = sign << 31
exp = ((-14 - n_bit + 127) << 23) % UInt32
sig = ((sig & (~bit)) << n_bit) << (23 - 10)
ret = sign | exp | sig
end
elseif exp == 0x1f
if sig == 0 # Inf
if sign == 0
ret = 0x7f800000
else
ret = 0xff800000
end
else # NaN
ret = 0x7fc00000 | (sign<<31) | (sig<<(23-10))
end
else
sign = sign << 31
exp = ((exp - 15 + 127) << 23) % UInt32
sig = sig << (23 - 10)
ret = sign | exp | sig
end
return reinterpret(Float32, ret)
end
#convert(::Type{Float16}, x::Float32) = fptrunc(Float16, x)
Float32(x::Float64) = fptrunc(Float32, x)
Float16(x::Float64) = Float16(Float32(x))
#convert(::Type{Float32}, x::Float16) = fpext(Float32, x)
Float64(x::Float32) = fpext(Float64, x)
Float64(x::Float16) = Float64(Float32(x))
AbstractFloat(x::Bool) = Float64(x)
AbstractFloat(x::Int8) = Float64(x)
AbstractFloat(x::Int16) = Float64(x)
AbstractFloat(x::Int32) = Float64(x)
AbstractFloat(x::Int64) = Float64(x) # LOSSY
AbstractFloat(x::Int128) = Float64(x) # LOSSY
AbstractFloat(x::UInt8) = Float64(x)
AbstractFloat(x::UInt16) = Float64(x)
AbstractFloat(x::UInt32) = Float64(x)
AbstractFloat(x::UInt64) = Float64(x) # LOSSY
AbstractFloat(x::UInt128) = Float64(x) # LOSSY
Bool(x::Float16) = x==0 ? false : x==1 ? true : throw(InexactError(:Bool, Bool, x))
"""
float(x)
Convert a number or array to a floating point data type.
"""
float(x) = AbstractFloat(x)
"""
float(T::Type)
Return an appropriate type to represent a value of type `T` as a floating point value.
Equivalent to `typeof(float(zero(T)))`.
# Examples
```jldoctest
julia> float(Complex{Int})
Complex{Float64}
julia> float(Int)
Float64
```
"""
float(::Type{T}) where {T<:Number} = typeof(float(zero(T)))
float(::Type{T}) where {T<:AbstractFloat} = T
"""
unsafe_trunc(T, x)
Return the nearest integral value of type `T` whose absolute value is
less than or equal to `x`. If the value is not representable by `T`, an arbitrary value will
be returned.
"""
function unsafe_trunc end
for Ti in (Int8, Int16, Int32, Int64)
@eval begin
unsafe_trunc(::Type{$Ti}, x::Float16) = unsafe_trunc($Ti, Float32(x))
unsafe_trunc(::Type{$Ti}, x::Float32) = fptosi($Ti, x)
unsafe_trunc(::Type{$Ti}, x::Float64) = fptosi($Ti, x)
end
end
for Ti in (UInt8, UInt16, UInt32, UInt64)
@eval begin
unsafe_trunc(::Type{$Ti}, x::Float16) = unsafe_trunc($Ti, Float32(x))
unsafe_trunc(::Type{$Ti}, x::Float32) = fptoui($Ti, x)
unsafe_trunc(::Type{$Ti}, x::Float64) = fptoui($Ti, x)
end
end
function unsafe_trunc(::Type{UInt128}, x::Float64)
xu = reinterpret(UInt64,x)
k = Int(xu >> 52) & 0x07ff - 1075
xu = (xu & 0x000f_ffff_ffff_ffff) | 0x0010_0000_0000_0000
if k <= 0
UInt128(xu >> -k)
else
UInt128(xu) << k
end
end
function unsafe_trunc(::Type{Int128}, x::Float64)
copysign(unsafe_trunc(UInt128,x) % Int128, x)
end
function unsafe_trunc(::Type{UInt128}, x::Float32)
xu = reinterpret(UInt32,x)
k = Int(xu >> 23) & 0x00ff - 150
xu = (xu & 0x007f_ffff) | 0x0080_0000
if k <= 0
UInt128(xu >> -k)
else
UInt128(xu) << k
end
end
function unsafe_trunc(::Type{Int128}, x::Float32)
copysign(unsafe_trunc(UInt128,x) % Int128, x)
end
unsafe_trunc(::Type{UInt128}, x::Float16) = unsafe_trunc(UInt128, Float32(x))
unsafe_trunc(::Type{Int128}, x::Float16) = unsafe_trunc(Int128, Float32(x))
# matches convert methods
# also determines floor, ceil, round
trunc(::Type{Signed}, x::Float32) = trunc(Int,x)
trunc(::Type{Signed}, x::Float64) = trunc(Int,x)
trunc(::Type{Unsigned}, x::Float32) = trunc(UInt,x)
trunc(::Type{Unsigned}, x::Float64) = trunc(UInt,x)
trunc(::Type{Integer}, x::Float32) = trunc(Int,x)
trunc(::Type{Integer}, x::Float64) = trunc(Int,x)
trunc(::Type{T}, x::Float16) where {T<:Integer} = trunc(T, Float32(x))
# fallbacks
floor(::Type{T}, x::AbstractFloat) where {T<:Integer} = trunc(T,round(x, RoundDown))
floor(::Type{T}, x::Float16) where {T<:Integer} = floor(T, Float32(x))
ceil(::Type{T}, x::AbstractFloat) where {T<:Integer} = trunc(T,round(x, RoundUp))
ceil(::Type{T}, x::Float16) where {T<:Integer} = ceil(T, Float32(x))
round(::Type{T}, x::AbstractFloat) where {T<:Integer} = trunc(T,round(x, RoundNearest))
round(::Type{T}, x::Float16) where {T<:Integer} = round(T, Float32(x))
round(x::Float64, r::RoundingMode{:ToZero}) = trunc_llvm(x)
round(x::Float32, r::RoundingMode{:ToZero}) = trunc_llvm(x)
round(x::Float64, r::RoundingMode{:Down}) = floor_llvm(x)
round(x::Float32, r::RoundingMode{:Down}) = floor_llvm(x)
round(x::Float64, r::RoundingMode{:Up}) = ceil_llvm(x)
round(x::Float32, r::RoundingMode{:Up}) = ceil_llvm(x)
round(x::Float64, r::RoundingMode{:Nearest}) = rint_llvm(x)
round(x::Float32, r::RoundingMode{:Nearest}) = rint_llvm(x)
round(x::Float16, r::RoundingMode{:ToZero}) = Float16(round(Float32(x), r))
round(x::Float16, r::RoundingMode{:Down}) = Float16(round(Float32(x), r))
round(x::Float16, r::RoundingMode{:Up}) = Float16(round(Float32(x), r))
round(x::Float16, r::RoundingMode{:Nearest}) = Float16(round(Float32(x), r))
## floating point promotions ##
promote_rule(::Type{Float32}, ::Type{Float16}) = Float32
promote_rule(::Type{Float64}, ::Type{Float16}) = Float64
promote_rule(::Type{Float64}, ::Type{Float32}) = Float64
widen(::Type{Float16}) = Float32
widen(::Type{Float32}) = Float64
## floating point arithmetic ##
-(x::Float64) = neg_float(x)
-(x::Float32) = neg_float(x)
-(x::Float16) = reinterpret(Float16, reinterpret(UInt16, x) ⊻ 0x8000)
for op in (:+, :-, :*, :/, :\, :^)
@eval ($op)(a::Float16, b::Float16) = Float16(($op)(Float32(a), Float32(b)))
end
+(x::Float32, y::Float32) = add_float(x, y)
+(x::Float64, y::Float64) = add_float(x, y)
-(x::Float32, y::Float32) = sub_float(x, y)
-(x::Float64, y::Float64) = sub_float(x, y)
*(x::Float32, y::Float32) = mul_float(x, y)
*(x::Float64, y::Float64) = mul_float(x, y)
/(x::Float32, y::Float32) = div_float(x, y)
/(x::Float64, y::Float64) = div_float(x, y)
muladd(x::Float32, y::Float32, z::Float32) = muladd_float(x, y, z)
muladd(x::Float64, y::Float64, z::Float64) = muladd_float(x, y, z)
function muladd(a::Float16, b::Float16, c::Float16)
Float16(muladd(Float32(a), Float32(b), Float32(c)))
end
# TODO: faster floating point div?
# TODO: faster floating point fld?
# TODO: faster floating point mod?
for func in (:div,:fld,:cld,:rem,:mod)
@eval begin
$func(a::Float16,b::Float16) = Float16($func(Float32(a),Float32(b)))
end
end
rem(x::Float32, y::Float32) = rem_float(x, y)
rem(x::Float64, y::Float64) = rem_float(x, y)
cld(x::T, y::T) where {T<:AbstractFloat} = -fld(-x,y)
function mod(x::T, y::T) where T<:AbstractFloat
r = rem(x,y)
if r == 0
copysign(r,y)
elseif (r > 0) ⊻ (y > 0)
r+y
else
r
end
end
## floating point comparisons ##
function ==(x::Float16, y::Float16)
ix = reinterpret(UInt16,x)
iy = reinterpret(UInt16,y)
if (ix|iy)&0x7fff > 0x7c00 #isnan(x) || isnan(y)
return false
end
if (ix|iy)&0x7fff == 0x0000
return true
end
return ix == iy
end
==(x::Float32, y::Float32) = eq_float(x, y)
==(x::Float64, y::Float64) = eq_float(x, y)
!=(x::Float32, y::Float32) = ne_float(x, y)
!=(x::Float64, y::Float64) = ne_float(x, y)
<( x::Float32, y::Float32) = lt_float(x, y)
<( x::Float64, y::Float64) = lt_float(x, y)
<=(x::Float32, y::Float32) = le_float(x, y)
<=(x::Float64, y::Float64) = le_float(x, y)
isequal(x::Float32, y::Float32) = fpiseq(x, y)
isequal(x::Float64, y::Float64) = fpiseq(x, y)
isless( x::Float32, y::Float32) = fpislt(x, y)
isless( x::Float64, y::Float64) = fpislt(x, y)
for op in (:<, :<=, :isless)
@eval ($op)(a::Float16, b::Float16) = ($op)(Float32(a), Float32(b))
end
# Exact Float (Tf) vs Integer (Ti) comparisons
# Assumes:
# - typemax(Ti) == 2^n-1
# - typemax(Ti) can't be exactly represented by Tf:
# => Tf(typemax(Ti)) == 2^n or Inf
# - typemin(Ti) can be exactly represented by Tf
#
# 1. convert y::Ti to float fy::Tf
# 2. perform Tf comparison x vs fy
# 3. if x == fy, check if (1) resulted in rounding:
# a. convert fy back to Ti and compare with original y
# b. unsafe_convert undefined behaviour if fy == Tf(typemax(Ti))
# (but consequently x == fy > y)
for Ti in (Int64,UInt64,Int128,UInt128)
for Tf in (Float32,Float64)
@eval begin
function ==(x::$Tf, y::$Ti)
fy = ($Tf)(y)
(x == fy) & (fy != $(Tf(typemax(Ti)))) & (y == unsafe_trunc($Ti,fy))
end
==(y::$Ti, x::$Tf) = x==y
function <(x::$Ti, y::$Tf)
fx = ($Tf)(x)
(fx < y) | ((fx == y) & ((fx == $(Tf(typemax(Ti)))) | (x < unsafe_trunc($Ti,fx)) ))
end
function <=(x::$Ti, y::$Tf)
fx = ($Tf)(x)
(fx < y) | ((fx == y) & ((fx == $(Tf(typemax(Ti)))) | (x <= unsafe_trunc($Ti,fx)) ))
end
function <(x::$Tf, y::$Ti)
fy = ($Tf)(y)
(x < fy) | ((x == fy) & (fy < $(Tf(typemax(Ti)))) & (unsafe_trunc($Ti,fy) < y))
end
function <=(x::$Tf, y::$Ti)
fy = ($Tf)(y)
(x < fy) | ((x == fy) & (fy < $(Tf(typemax(Ti)))) & (unsafe_trunc($Ti,fy) <= y))
end
end
end
end
for op in (:(==), :<, :<=)
@eval begin
($op)(x::Float16, y::Union{Int128,UInt128,Int64,UInt64}) = ($op)(Float64(x), Float64(y))
($op)(x::Union{Int128,UInt128,Int64,UInt64}, y::Float16) = ($op)(Float64(x), Float64(y))
($op)(x::Union{Float16,Float32}, y::Union{Int32,UInt32}) = ($op)(Float64(x), Float64(y))
($op)(x::Union{Int32,UInt32}, y::Union{Float16,Float32}) = ($op)(Float64(x), Float64(y))
($op)(x::Float16, y::Union{Int16,UInt16}) = ($op)(Float32(x), Float32(y))
($op)(x::Union{Int16,UInt16}, y::Float16) = ($op)(Float32(x), Float32(y))
end
end
abs(x::Float16) = reinterpret(Float16, reinterpret(UInt16, x) & 0x7fff)
abs(x::Float32) = abs_float(x)
abs(x::Float64) = abs_float(x)
"""
isnan(f) -> Bool
Test whether a number value is a NaN, an indeterminate value which is neither an infinity
nor a finite number ("not a number").
"""
isnan(x::AbstractFloat) = x != x
isnan(x::Float16) = reinterpret(UInt16,x)&0x7fff > 0x7c00
isnan(x::Real) = false
"""
isfinite(f) -> Bool
Test whether a number is finite.
# Examples
```jldoctest
julia> isfinite(5)
true
julia> isfinite(NaN32)
false
```
"""
isfinite(x::AbstractFloat) = x - x == 0
isfinite(x::Float16) = reinterpret(UInt16,x)&0x7c00 != 0x7c00
isfinite(x::Real) = decompose(x)[3] != 0
isfinite(x::Integer) = true
"""
isinf(f) -> Bool
Test whether a number is infinite.
"""
isinf(x::Real) = !isnan(x) & !isfinite(x)
## hashing small, built-in numeric types ##
hx(a::UInt64, b::Float64, h::UInt) = hash_uint64((3a + reinterpret(UInt64,b)) - h)
const hx_NaN = hx(UInt64(0), NaN, UInt(0 ))
hash(x::UInt64, h::UInt) = hx(x, Float64(x), h)
hash(x::Int64, h::UInt) = hx(reinterpret(UInt64, abs(x)), Float64(x), h)
hash(x::Float64, h::UInt) = isnan(x) ? (hx_NaN ⊻ h) : hx(fptoui(UInt64, abs(x)), x, h)
hash(x::Union{Bool,Int8,UInt8,Int16,UInt16,Int32,UInt32}, h::UInt) = hash(Int64(x), h)
hash(x::Float32, h::UInt) = hash(Float64(x), h)
"""
precision(num::AbstractFloat)
Get the precision of a floating point number, as defined by the effective number of bits in
the mantissa.
"""
function precision end
precision(::Type{Float16}) = 11
precision(::Type{Float32}) = 24
precision(::Type{Float64}) = 53
precision(::T) where {T<:AbstractFloat} = precision(T)
"""
uabs(x::Integer)
Return the absolute value of `x`, possibly returning a different type should the
operation be susceptible to overflow. This typically arises when `x` is a two's complement
signed integer, so that `abs(typemin(x)) == typemin(x) < 0`, in which case the result of
`uabs(x)` will be an unsigned integer of the same size.
"""
uabs(x::Integer) = abs(x)
uabs(x::BitSigned) = unsigned(abs(x))
"""
nextfloat(x::AbstractFloat, n::Integer)
The result of `n` iterative applications of `nextfloat` to `x` if `n >= 0`, or `-n`
applications of `prevfloat` if `n < 0`.
"""
function nextfloat(f::IEEEFloat, d::Integer)
F = typeof(f)
fumax = reinterpret(Unsigned, F(Inf))
U = typeof(fumax)
isnan(f) && return f
fi = reinterpret(Signed, f)
fneg = fi < 0
fu = unsigned(fi & typemax(fi))
dneg = d < 0
da = uabs(d)
if da > typemax(U)
fneg = dneg
fu = fumax
else
du = da % U
if fneg ⊻ dneg
if du > fu
fu = min(fumax, du - fu)
fneg = !fneg
else
fu = fu - du
end
else
if fumax - fu < du
fu = fumax
else
fu = fu + du
end
end
end
if fneg
fu |= sign_mask(F)
end
reinterpret(F, fu)
end
"""
nextfloat(x::AbstractFloat)
Return the smallest floating point number `y` of the same type as `x` such `x < y`. If no
such `y` exists (e.g. if `x` is `Inf` or `NaN`), then return `x`.
"""
nextfloat(x::AbstractFloat) = nextfloat(x,1)
"""
prevfloat(x::AbstractFloat, n::Integer)
The result of `n` iterative applications of `prevfloat` to `x` if `n >= 0`, or `-n`
applications of `nextfloat` if `n < 0`.
"""
prevfloat(x::AbstractFloat, d::Integer) = nextfloat(x, -d)
"""
prevfloat(x::AbstractFloat)
Return the largest floating point number `y` of the same type as `x` such `y < x`. If no
such `y` exists (e.g. if `x` is `-Inf` or `NaN`), then return `x`.
"""
prevfloat(x::AbstractFloat) = nextfloat(x,-1)
for Ti in (Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128)
for Tf in (Float32, Float64)
if Ti <: Unsigned || sizeof(Ti) < sizeof(Tf)
# Here `Tf(typemin(Ti))-1` is exact, so we can compare the lower-bound
# directly. `Tf(typemax(Ti))+1` is either always exactly representable, or
# rounded to `Inf` (e.g. when `Ti==UInt128 && Tf==Float32`).
@eval begin
function trunc(::Type{$Ti},x::$Tf)
if $(Tf(typemin(Ti))-one(Tf)) < x < $(Tf(typemax(Ti))+one(Tf))
return unsafe_trunc($Ti,x)
else
throw(InexactError(:trunc, $Ti, x))
end
end
function (::Type{$Ti})(x::$Tf)
if ($(Tf(typemin(Ti))) <= x <= $(Tf(typemax(Ti)))) && (round(x, RoundToZero) == x)
return unsafe_trunc($Ti,x)
else
throw(InexactError($(Expr(:quote,Ti.name.name)), $Ti, x))
end
end
end
else
# Here `eps(Tf(typemin(Ti))) > 1`, so the only value which can be truncated to
# `Tf(typemin(Ti)` is itself. Similarly, `Tf(typemax(Ti))` is inexact and will
# be rounded up. This assumes that `Tf(typemin(Ti)) > -Inf`, which is true for
# these types, but not for `Float16` or larger integer types.
@eval begin
function trunc(::Type{$Ti},x::$Tf)
if $(Tf(typemin(Ti))) <= x < $(Tf(typemax(Ti)))
return unsafe_trunc($Ti,x)
else
throw(InexactError(:trunc, $Ti, x))
end
end
function (::Type{$Ti})(x::$Tf)
if ($(Tf(typemin(Ti))) <= x < $(Tf(typemax(Ti)))) && (round(x, RoundToZero) == x)
return unsafe_trunc($Ti,x)
else
throw(InexactError($(Expr(:quote,Ti.name.name)), $Ti, x))
end
end
end
end
end
end
"""
issubnormal(f) -> Bool
Test whether a floating point number is subnormal.
"""
function issubnormal(x::T) where {T<:IEEEFloat}
y = reinterpret(Unsigned, x)
(y & exponent_mask(T) == 0) & (y & significand_mask(T) != 0)
end
@eval begin
typemin(::Type{Float16}) = $(bitcast(Float16, 0xfc00))
typemax(::Type{Float16}) = $(Inf16)
typemin(::Type{Float32}) = $(-Inf32)
typemax(::Type{Float32}) = $(Inf32)
typemin(::Type{Float64}) = $(-Inf64)
typemax(::Type{Float64}) = $(Inf64)
typemin(x::T) where {T<:Real} = typemin(T)
typemax(x::T) where {T<:Real} = typemax(T)
floatmin(::Type{Float16}) = $(bitcast(Float16, 0x0400))
floatmin(::Type{Float32}) = $(bitcast(Float32, 0x00800000))
floatmin(::Type{Float64}) = $(bitcast(Float64, 0x0010000000000000))
floatmax(::Type{Float16}) = $(bitcast(Float16, 0x7bff))
floatmax(::Type{Float32}) = $(bitcast(Float32, 0x7f7fffff))
floatmax(::Type{Float64}) = $(bitcast(Float64, 0x7fefffffffffffff))
eps(x::AbstractFloat) = isfinite(x) ? abs(x) >= floatmin(x) ? ldexp(eps(typeof(x)), exponent(x)) : nextfloat(zero(x)) : oftype(x, NaN)
eps(::Type{Float16}) = $(bitcast(Float16, 0x1400))
eps(::Type{Float32}) = $(bitcast(Float32, 0x34000000))
eps(::Type{Float64}) = $(bitcast(Float64, 0x3cb0000000000000))
eps() = eps(Float64)
end
"""
floatmin(T)
The smallest in absolute value non-subnormal value representable by the given
floating-point DataType `T`.
"""
floatmin(x::T) where {T<:AbstractFloat} = floatmin(T)
"""
floatmax(T)
The highest finite value representable by the given floating-point DataType `T`.
# Examples
```jldoctest
julia> floatmax(Float16)
Float16(6.55e4)
julia> floatmax(Float32)
3.4028235f38
```
"""
floatmax(x::T) where {T<:AbstractFloat} = floatmax(T)
floatmin() = floatmin(Float64)
floatmax() = floatmax(Float64)
"""
eps(::Type{T}) where T<:AbstractFloat
eps()
Return the *machine epsilon* of the floating point type `T` (`T = Float64` by
default). This is defined as the gap between 1 and the next largest value representable by
`typeof(one(T))`, and is equivalent to `eps(one(T))`. (Since `eps(T)` is a
bound on the *relative error* of `T`, it is a "dimensionless" quantity like [`one`](@ref).)
# Examples
```jldoctest
julia> eps()
2.220446049250313e-16
julia> eps(Float32)
1.1920929f-7
julia> 1.0 + eps()
1.0000000000000002
julia> 1.0 + eps()/2
1.0
```
"""
eps(::Type{<:AbstractFloat})
"""
eps(x::AbstractFloat)
Return the *unit in last place* (ulp) of `x`. This is the distance between consecutive
representable floating point values at `x`. In most cases, if the distance on either side
of `x` is different, then the larger of the two is taken, that is
eps(x) == max(x-prevfloat(x), nextfloat(x)-x)
The exceptions to this rule are the smallest and largest finite values
(e.g. `nextfloat(-Inf)` and `prevfloat(Inf)` for [`Float64`](@ref)), which round to the
smaller of the values.
The rationale for this behavior is that `eps` bounds the floating point rounding
error. Under the default `RoundNearest` rounding mode, if ``y`` is a real number and ``x``
is the nearest floating point number to ``y``, then
```math
|y-x| \\leq \\operatorname{eps}(x)/2.
```
# Examples
```jldoctest
julia> eps(1.0)
2.220446049250313e-16
julia> eps(prevfloat(2.0))
2.220446049250313e-16
julia> eps(2.0)
4.440892098500626e-16
julia> x = prevfloat(Inf) # largest finite Float64
1.7976931348623157e308
julia> x + eps(x)/2 # rounds up
Inf
julia> x + prevfloat(eps(x)/2) # rounds down
1.7976931348623157e308
```
"""
eps(::AbstractFloat)
## byte order swaps for arbitrary-endianness serialization/deserialization ##
bswap(x::IEEEFloat) = bswap_int(x)
# bit patterns
reinterpret(::Type{Unsigned}, x::Float64) = reinterpret(UInt64, x)
reinterpret(::Type{Unsigned}, x::Float32) = reinterpret(UInt32, x)
reinterpret(::Type{Signed}, x::Float64) = reinterpret(Int64, x)
reinterpret(::Type{Signed}, x::Float32) = reinterpret(Int32, x)
sign_mask(::Type{Float64}) = 0x8000_0000_0000_0000
exponent_mask(::Type{Float64}) = 0x7ff0_0000_0000_0000
exponent_one(::Type{Float64}) = 0x3ff0_0000_0000_0000
exponent_half(::Type{Float64}) = 0x3fe0_0000_0000_0000
significand_mask(::Type{Float64}) = 0x000f_ffff_ffff_ffff
sign_mask(::Type{Float32}) = 0x8000_0000
exponent_mask(::Type{Float32}) = 0x7f80_0000
exponent_one(::Type{Float32}) = 0x3f80_0000
exponent_half(::Type{Float32}) = 0x3f00_0000
significand_mask(::Type{Float32}) = 0x007f_ffff
sign_mask(::Type{Float16}) = 0x8000
exponent_mask(::Type{Float16}) = 0x7c00
exponent_one(::Type{Float16}) = 0x3c00
exponent_half(::Type{Float16}) = 0x3800
significand_mask(::Type{Float16}) = 0x03ff
for T in (Float16, Float32, Float64)
@eval significand_bits(::Type{$T}) = $(trailing_ones(significand_mask(T)))
@eval exponent_bits(::Type{$T}) = $(sizeof(T)*8 - significand_bits(T) - 1)
@eval exponent_bias(::Type{$T}) = $(Int(exponent_one(T) >> significand_bits(T)))
# maximum float exponent
@eval exponent_max(::Type{$T}) = $(Int(exponent_mask(T) >> significand_bits(T)) - exponent_bias(T))
# maximum float exponent without bias
@eval exponent_raw_max(::Type{$T}) = $(Int(exponent_mask(T) >> significand_bits(T)))
end
# integer size of float
uinttype(::Type{Float64}) = UInt64
uinttype(::Type{Float32}) = UInt32
uinttype(::Type{Float16}) = UInt16
Base.iszero(x::Float16) = reinterpret(UInt16, x) & ~sign_mask(Float16) == 0x0000
## Array operations on floating point numbers ##
float(A::AbstractArray{<:AbstractFloat}) = A
function float(A::AbstractArray{T}) where T
if !isconcretetype(T)
error("`float` not defined on abstractly-typed arrays; please convert to a more specific type")
end
convert(AbstractArray{typeof(float(zero(T)))}, A)
end
float(r::StepRange) = float(r.start):float(r.step):float(last(r))
float(r::UnitRange) = float(r.start):float(last(r))
float(r::StepRangeLen{T}) where {T} =
StepRangeLen{typeof(float(T(r.ref)))}(float(r.ref), float(r.step), length(r), r.offset)
function float(r::LinRange)
LinRange(float(r.start), float(r.stop), length(r))
end