forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
intfuncs.jl
383 lines (341 loc) · 10.5 KB
/
intfuncs.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
# This file is a part of Julia. License is MIT: http://julialang.org/license
## number-theoretic functions ##
function gcd{T<:Integer}(a::T, b::T)
while b != 0
t = b
b = rem(a, b)
a = t
end
checked_abs(a)
end
# binary GCD (aka Stein's) algorithm
# about 1.7x (2.1x) faster for random Int64s (Int128s)
function gcd{T<:Union{Int64,UInt64,Int128,UInt128}}(a::T, b::T)
a == 0 && return abs(b)
b == 0 && return abs(a)
za = trailing_zeros(a)
zb = trailing_zeros(b)
k = min(za, zb)
u = unsigned(abs(a >> za))
v = unsigned(abs(b >> zb))
while u != v
if u > v
u, v = v, u
end
v -= u
v >>= trailing_zeros(v)
end
r = u << k
# T(r) would throw InexactError; we want OverflowError instead
r > typemax(T) && throw(OverflowError())
r % T
end
# explicit a==0 test is to handle case of lcm(0,0) correctly
lcm{T<:Integer}(a::T, b::T) = a == 0 ? a : checked_abs(a * div(b, gcd(b,a)))
gcd(a::Integer) = a
lcm(a::Integer) = a
gcd(a::Integer, b::Integer) = gcd(promote(a,b)...)
lcm(a::Integer, b::Integer) = lcm(promote(a,b)...)
gcd(a::Integer, b::Integer...) = gcd(a, gcd(b...))
lcm(a::Integer, b::Integer...) = lcm(a, lcm(b...))
gcd{T<:Integer}(abc::AbstractArray{T}) = reduce(gcd,abc)
lcm{T<:Integer}(abc::AbstractArray{T}) = reduce(lcm,abc)
# return (gcd(a,b),x,y) such that ax+by == gcd(a,b)
function gcdx{T<:Integer}(a::T, b::T)
s0, s1 = one(T), zero(T)
t0, t1 = s1, s0
while b != 0
q = div(a, b)
a, b = b, rem(a, b)
s0, s1 = s1, s0 - q*s1
t0, t1 = t1, t0 - q*t1
end
a < 0 ? (-a, -s0, -t0) : (a, s0, t0)
end
gcdx(a::Integer, b::Integer) = gcdx(promote(a,b)...)
# multiplicative inverse of n mod m, error if none
function invmod(n, m)
g, x, y = gcdx(n, m)
if g != 1 || m == 0
error("no inverse exists")
end
x < 0 ? abs(m) + x : x
end
# ^ for any x supporting *
to_power_type(x::Number) = oftype(x*x, x)
to_power_type(x) = x
function power_by_squaring(x_, p::Integer)
x = to_power_type(x_)
if p == 1
return copy(x)
elseif p == 0
return one(x)
elseif p == 2
return x*x
elseif p < 0
throw(DomainError())
end
t = trailing_zeros(p) + 1
p >>= t
while (t -= 1) > 0
x *= x
end
y = x
while p > 0
t = trailing_zeros(p) + 1
p >>= t
while (t -= 1) >= 0
x *= x
end
y *= x
end
return y
end
power_by_squaring(x::Bool, p::Unsigned) = ((p==0) | x)
function power_by_squaring(x::Bool, p::Integer)
p < 0 && throw(DomainError())
return (p==0) | x
end
^{T<:Integer}(x::T, p::T) = power_by_squaring(x,p)
^(x::Number, p::Integer) = power_by_squaring(x,p)
^(x, p::Integer) = power_by_squaring(x,p)
# b^p mod m
function powermod{T<:Integer}(x::Integer, p::Integer, m::T)
p < 0 && return powermod(invmod(x, m), -p, m)
p == 0 && return mod(one(m),m)
(m == 1 || m == -1) && return zero(m)
b = oftype(m,mod(x,m)) # this also checks for divide by zero
t = prevpow2(p)
local r::T
r = 1
while true
if p >= t
r = mod(widemul(r,b),m)
p -= t
end
t >>>= 1
t <= 0 && break
r = mod(widemul(r,r),m)
end
return r
end
# optimization: promote the modulus m to BigInt only once (cf. widemul in generic powermod above)
powermod(x::Integer, p::Integer, m::Union{Int128,UInt128}) = oftype(m, powermod(x, p, big(m)))
# smallest power of 2 >= x
nextpow2(x::Unsigned) = one(x)<<((sizeof(x)<<3)-leading_zeros(x-one(x)))
nextpow2(x::Integer) = reinterpret(typeof(x),x < 0 ? -nextpow2(unsigned(-x)) : nextpow2(unsigned(x)))
prevpow2(x::Unsigned) = one(x) << unsigned((sizeof(x)<<3)-leading_zeros(x)-1)
prevpow2(x::Integer) = reinterpret(typeof(x),x < 0 ? -prevpow2(unsigned(-x)) : prevpow2(unsigned(x)))
ispow2(x::Integer) = x > 0 && count_ones(x) == 1
# smallest a^n >= x, with integer n
function nextpow(a::Real, x::Real)
(a <= 1 || x <= 0) && throw(DomainError())
x <= 1 && return one(a)
n = ceil(Integer,log(a, x))
p = a^(n-1)
# guard against roundoff error, e.g., with a=5 and x=125
p >= x ? p : a^n
end
# largest a^n <= x, with integer n
function prevpow(a::Real, x::Real)
(a <= 1 || x < 1) && throw(DomainError())
n = floor(Integer,log(a, x))
p = a^(n+1)
p <= x ? p : a^n
end
# decimal digits in an unsigned integer
const powers_of_ten = [
0x0000000000000001, 0x000000000000000a, 0x0000000000000064, 0x00000000000003e8,
0x0000000000002710, 0x00000000000186a0, 0x00000000000f4240, 0x0000000000989680,
0x0000000005f5e100, 0x000000003b9aca00, 0x00000002540be400, 0x000000174876e800,
0x000000e8d4a51000, 0x000009184e72a000, 0x00005af3107a4000, 0x00038d7ea4c68000,
0x002386f26fc10000, 0x016345785d8a0000, 0x0de0b6b3a7640000, 0x8ac7230489e80000,
]
function ndigits0z(x::Union{UInt8,UInt16,UInt32,UInt64})
lz = (sizeof(x)<<3)-leading_zeros(x)
nd = (1233*lz)>>12+1
nd -= x < powers_of_ten[nd]
end
function ndigits0z(x::UInt128)
n = 0
while x > 0x8ac7230489e80000
x = div(x,0x8ac7230489e80000)
n += 19
end
return n + ndigits0z(UInt64(x))
end
ndigits0z(x::Integer) = ndigits0z(unsigned(abs(x)))
const ndigits_max_mul = Core.sizeof(Int) == 4 ? 69000000 : 290000000000000000
function ndigits0znb(n::Int, b::Int)
d = 0
while n != 0
n = cld(n,b)
d += 1
end
return d
end
function ndigits0z(n::Unsigned, b::Int)
d = 0
if b < 0
d = ndigits0znb(signed(n), b)
else
b == 2 && return (sizeof(n)<<3-leading_zeros(n))
b == 8 && return div((sizeof(n)<<3)-leading_zeros(n)+2,3)
b == 16 && return (sizeof(n)<<1)-(leading_zeros(n)>>2)
b == 10 && return ndigits0z(n)
while ndigits_max_mul < n
n = div(n,b)
d += 1
end
m = 1
while m <= n
m *= b
d += 1
end
end
return d
end
ndigits0z(x::Integer, b::Integer) = ndigits0z(unsigned(abs(x)),Int(b))
ndigitsnb(x::Integer, b::Integer) = x==0 ? 1 : ndigits0znb(x, b)
ndigits(x::Unsigned, b::Integer) = x==0 ? 1 : ndigits0z(x,Int(b))
ndigits(x::Unsigned) = x==0 ? 1 : ndigits0z(x)
ndigits(x::Integer, b::Integer) = b >= 0 ? ndigits(unsigned(abs(x)),Int(b)) : ndigitsnb(x, b)
ndigits(x::Integer) = ndigits(unsigned(abs(x)))
## integer to string functions ##
string(x::Union{Int8,Int16,Int32,Int64,Int128}) = dec(x)
function bin(x::Unsigned, pad::Int, neg::Bool)
i = neg + max(pad,sizeof(x)<<3-leading_zeros(x))
a = Array{UInt8}(i)
while i > neg
a[i] = '0'+(x&0x1)
x >>= 1
i -= 1
end
if neg; a[1]='-'; end
String(a)
end
function oct(x::Unsigned, pad::Int, neg::Bool)
i = neg + max(pad,div((sizeof(x)<<3)-leading_zeros(x)+2,3))
a = Array{UInt8}(i)
while i > neg
a[i] = '0'+(x&0x7)
x >>= 3
i -= 1
end
if neg; a[1]='-'; end
String(a)
end
function dec(x::Unsigned, pad::Int, neg::Bool)
i = neg + max(pad,ndigits0z(x))
a = Array{UInt8}(i)
while i > neg
a[i] = '0'+rem(x,10)
x = oftype(x,div(x,10))
i -= 1
end
if neg; a[1]='-'; end
String(a)
end
function hex(x::Unsigned, pad::Int, neg::Bool)
i = neg + max(pad,(sizeof(x)<<1)-(leading_zeros(x)>>2))
a = Array{UInt8}(i)
while i > neg
d = x & 0xf
a[i] = '0'+d+39*(d>9)
x >>= 4
i -= 1
end
if neg; a[1]='-'; end
String(a)
end
num2hex(n::Integer) = hex(n, sizeof(n)*2)
const base36digits = ['0':'9';'a':'z']
const base62digits = ['0':'9';'A':'Z';'a':'z']
function base(b::Int, x::Unsigned, pad::Int, neg::Bool)
2 <= b <= 62 || throw(ArgumentError("base must be 2 ≤ base ≤ 62, got $b"))
digits = b <= 36 ? base36digits : base62digits
i = neg + max(pad,ndigits0z(x,b))
a = Array{UInt8}(i)
while i > neg
a[i] = digits[1+rem(x,b)]
x = div(x,b)
i -= 1
end
if neg; a[1]='-'; end
String(a)
end
base(b::Integer, n::Integer, pad::Integer=1) = base(Int(b), unsigned(abs(n)), pad, n<0)
for sym in (:bin, :oct, :dec, :hex)
@eval begin
($sym)(x::Unsigned, p::Int) = ($sym)(x,p,false)
($sym)(x::Unsigned) = ($sym)(x,1,false)
($sym)(x::Char, p::Int) = ($sym)(unsigned(x),p,false)
($sym)(x::Char) = ($sym)(unsigned(x),1,false)
($sym)(x::Integer, p::Int) = ($sym)(unsigned(abs(x)),p,x<0)
($sym)(x::Integer) = ($sym)(unsigned(abs(x)),1,x<0)
end
end
bits(x::Union{Bool,Int8,UInt8}) = bin(reinterpret(UInt8,x),8)
bits(x::Union{Int16,UInt16,Float16}) = bin(reinterpret(UInt16,x),16)
bits(x::Union{Char,Int32,UInt32,Float32}) = bin(reinterpret(UInt32,x),32)
bits(x::Union{Int64,UInt64,Float64}) = bin(reinterpret(UInt64,x),64)
bits(x::Union{Int128,UInt128}) = bin(reinterpret(UInt128,x),128)
digits{T<:Integer}(n::Integer, base::T=10, pad::Integer=1) = digits(T, n, base, pad)
function digits{T<:Integer}(::Type{T}, n::Integer, base::Integer=10, pad::Integer=1)
2 <= base || throw(ArgumentError("base must be ≥ 2, got $base"))
digits!(zeros(T, max(pad, ndigits0z(n,base))), n, base)
end
function digits!{T<:Integer}(a::AbstractArray{T,1}, n::Integer, base::Integer=10)
2 <= base || throw(ArgumentError("base must be ≥ 2, got $base"))
base - 1 <= typemax(T) || throw(ArgumentError("type $T too small for base $base"))
for i in eachindex(a)
a[i] = rem(n, base)
n = div(n, base)
end
return a
end
isqrt(x::Integer) = oftype(x, trunc(sqrt(x)))
function isqrt(x::Union{Int64,UInt64,Int128,UInt128})
x==0 && return x
s = oftype(x, trunc(sqrt(x)))
# fix with a Newton iteration, since conversion to float discards
# too many bits.
s = (s + div(x,s)) >> 1
s*s > x ? s-1 : s
end
function factorial(n::Integer)
n < 0 && throw(DomainError())
local f::typeof(n*n), i::typeof(n*n)
f = 1
for i = 2:n
f *= i
end
return f
end
function binomial{T<:Integer}(n::T, k::T)
k < 0 && return zero(T)
sgn = one(T)
if n < 0
n = -n + k -1
if isodd(k)
sgn = -sgn
end
end
k > n && return zero(T)
(k == 0 || k == n) && return sgn
k == 1 && return sgn*n
if k > (n>>1)
k = (n - k)
end
x::T = nn = n - k + 1
nn += 1
rr = 2
while rr <= k
xt = div(widemul(x, nn), rr)
x = xt
x == xt || throw(OverflowError())
rr += 1
nn += 1
end
convert(T, copysign(x, sgn))
end