forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathboundscheck_exec.jl
255 lines (220 loc) · 5.3 KB
/
boundscheck_exec.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
# This file is a part of Julia. License is MIT: https://julialang.org/license
module TestBoundsCheck
using Test, Random, InteractiveUtils
@enum BCOption bc_default bc_on bc_off
bc_opt = BCOption(Base.JLOptions().check_bounds)
# test for boundscheck block eliminated at same level
@inline function A1()
r = 0
@boundscheck r += 1
return r
end
@noinline function A1_noinline()
r = 0
@boundscheck r += 1
return r
end
function A1_inbounds()
r = 0
@inbounds begin
@boundscheck r += 1
end
return r
end
A1_wrap() = @inbounds return A1_inbounds()
if bc_opt == bc_default
@test A1() == 1
@test A1_inbounds() == 1
@test A1_wrap() == 0
elseif bc_opt == bc_on
@test A1() == 1
@test A1_inbounds() == 1
@test A1_wrap() == 1
else
@test A1() == 0
@test A1_inbounds() == 0
@test A1_wrap() == 0
end
# test for boundscheck block eliminated one layer deep, if the called method is inlined
@inline function A2()
r = A1()+1
return r
end
function A2_inbounds()
@inbounds r = A1()+1
return r
end
function A2_notinlined()
@inbounds r = A1_noinline()+1
return r
end
Base.@propagate_inbounds function A2_propagate_inbounds()
r = A1()+1
return r
end
if bc_opt == bc_default
@test A2() == 2
@test A2_inbounds() == 1
@test A2_notinlined() == 2
@test A2_propagate_inbounds() == 2
elseif bc_opt == bc_on
@test A2() == 2
@test A2_inbounds() == 2
@test A2_notinlined() == 2
@test A2_propagate_inbounds() == 2
else
@test A2() == 1
@test A2_inbounds() == 1
@test A2_notinlined() == 1
@test A2_propagate_inbounds() == 1
end
# test boundscheck NOT eliminated two layers deep, unless propagated
function A3()
r = A2()+1
return r
end
function A3_inbounds()
@inbounds r = A2()+1
return r
end
function A3_inbounds2()
@inbounds r = A2_propagate_inbounds()+1
return r
end
if bc_opt == bc_default
@test A3() == 3
@test A3_inbounds() == 3
@test A3_inbounds2() == 2
elseif bc_opt == bc_on
@test A3() == 3
@test A3_inbounds() == 3
@test A3_inbounds2() == 3
else
@test A3() == 2
@test A3_inbounds() == 2
@test A3_inbounds2() == 2
end
# swapped nesting order of @boundscheck and @inbounds
function A1_nested()
r = 0
@boundscheck @inbounds r += 1
return r
end
if bc_opt == bc_default || bc_opt == bc_on
@test A1_nested() == 1
else
@test A1_nested() == 0
end
# elide a throw
cb(x) = x > 0 || throw(BoundsError())
@inline function B1()
y = [1, 2, 3]
@inbounds begin
@boundscheck cb(0)
end
return 0
end
B1_wrap() = @inbounds return B1()
if bc_opt == bc_default
@test_throws BoundsError B1()
@test B1_wrap() == 0
elseif bc_opt == bc_off
@test B1() == 0
@test B1_wrap() == 0
else
@test_throws BoundsError B1()
@test_throws BoundsError B1_wrap()
end
# elide a simple branch
cond(x) = x > 0 ? x : -x
function B2()
y = [1, 2, 3]
@inbounds begin
@boundscheck cond(0)
end
return 0
end
@test B2() == 0
# Make sure type inference doesn't incorrectly optimize out
# `Expr(:inbounds, false)`
# Simply `return a[1]` doesn't work due to inlining bug
@inline function f1(a)
# This has to be an arrayget / arrayset since these currently have a
# implicit `Expr(:boundscheck)` that's not visible to type inference
x = a[1]
return x
end
# second level
@inline function g1(a)
x = f1(a)
return x
end
function k1(a)
# This `Expr(:inbounds, true)` shouldn't affect `f1`
@inbounds x = g1(a)
return x
end
if bc_opt != bc_off
@test_throws BoundsError k1(Int[])
end
# Ensure that broadcast doesn't use @inbounds when calling the function
if bc_opt != bc_off
let A = zeros(3,3)
@test_throws BoundsError broadcast(getindex, A, 1:3, 1:3)
end
end
# issue #19554
function f19554(a)
a[][3]
end
function f19554_2(a, b)
a[][3] = b
return a
end
a19554 = Ref{Array{Float64}}([1 2; 3 4])
@test f19554(a19554) === 2.0
@test f19554_2(a19554, 1) === a19554
@test a19554[][3] === f19554(a19554) === 1.0
# Ensure unsafe_view doesn't check bounds
function V1()
A = rand(10,10)
B = view(A, 4:7, 4:7)
C = Base.unsafe_view(B, -2:7, -2:7)
@test C == A
nothing
end
if bc_opt == bc_default || bc_opt == bc_off
@test V1() === nothing
else
@test_throws BoundsError V1()
end
# This tests both the bounds check elision and the behavior of `jl_array_isassigned`
# For `isbits` array the `ccall` should return a constant `true` and does not access
# the array
inbounds_isassigned(a, i) = @inbounds return isassigned(a, i)
if bc_opt == bc_default || bc_opt == bc_off
@test inbounds_isassigned(Int[], 2) == true
else
@test inbounds_isassigned(Int[], 2) == false
end
# Test that @inbounds annotations don't propagate too far for Array; Issue #20469
struct BadVector20469{T} <: AbstractVector{Int}
data::T
end
Base.size(X::BadVector20469) = size(X.data)
Base.getindex(X::BadVector20469, i::Int) = X.data[i-1]
if bc_opt != bc_off
@test_throws BoundsError BadVector20469([1,2,3])[:]
end
# Ensure iteration over arrays is vectorizable with boundschecks off
function g27079(X)
r = 0
@inbounds for x in X
r += x
end
r
end
if bc_opt == bc_default || bc_opt == bc_off
@test occursin("vector.body", sprint(code_llvm, g27079, Tuple{Vector{Int}}))
end
end