forked from HeliXonProtein/OmegaFold
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
105 lines (96 loc) · 3.51 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# -*- coding: utf-8 -*-
# =============================================================================
# Copyright 2022 HeliXon Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
"""
The main function to run the prediction
"""
# =============================================================================
# Imports
# =============================================================================
import gc
import logging
import os
import sys
import time
import torch
import omegafold as of
import pipeline
# =============================================================================
# Functions
# =============================================================================
@torch.no_grad()
def main():
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
args, state_dict, forward_config = pipeline.get_args()
# create the output directory
os.makedirs(args.output_dir, exist_ok=True)
# get the model
logging.info(f"Constructing OmegaFold")
model = of.OmegaFold(of.make_config())
if state_dict is None:
logging.warning("Inferencing without loading weight")
else:
if "model" in state_dict:
state_dict = state_dict.pop("model")
model.load_state_dict(state_dict)
model.eval()
model.to(args.device)
logging.info(f"Reading {args.input_file}")
for i, (input_data, save_path) in enumerate(
pipeline.fasta2inputs(
args.input_file,
num_pseudo_msa=args.num_pseudo_msa,
output_dir=args.output_dir,
device=args.device,
mask_rate=args.pseudo_msa_mask_rate,
num_cycle=args.num_cycle,
)
):
logging.info(f"Predicting {i + 1}th chain in {args.input_file}")
logging.info(
f"{len(input_data[0]['p_msa'][0])} residues in this chain."
)
ts = time.time()
try:
output = model(
input_data,
predict_with_confidence=True,
fwd_cfg=forward_config
)
except RuntimeError as e:
logging.info(f"Failed to generate {save_path} due to {e}")
logging.info(f"Skipping...")
continue
logging.info(f"Finished prediction in {time.time() - ts:.2f} seconds.")
logging.info(f"Saving prediction to {save_path}")
pipeline.save_pdb(
pos14=output["final_atom_positions"],
b_factors=output["confidence"] * 100,
sequence=input_data[0]["p_msa"][0],
mask=input_data[0]["p_msa_mask"][0],
save_path=save_path,
model=0
)
logging.info(f"Saved")
del output
torch.cuda.empty_cache()
gc.collect()
logging.info("Done!")
# =============================================================================
# Tests
# =============================================================================
if __name__ == '__main__':
main()