Skip to content

CyberAgentAILab/cmaes

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CMA-ES

Lightweight Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [1] implementation.

visualize-six-hump-camel

Rosenbrock function.

visualize-rosenbrock

IPOP-CMA-ES [2] on Himmelblau function.

visualize-ipop-cmaes-himmelblau

BIPOP-CMA-ES [3] on Himmelblau function.

visualize-bipop-cmaes-himmelblau

These GIF animations are generated by visualizer.py.

Installation

Supported Python versions are 3.5 or later.

$ pip install cmaes

Or you can install via conda-forge.

$ conda install -c conda-forge cmaes

Usage

This library provides an "ask-and-tell" style interface.

import numpy as np
from cmaes import CMA

def quadratic(x1, x2):
    return (x1 - 3) ** 2 + (10 * (x2 + 2)) ** 2

if __name__ == "__main__":
    optimizer = CMA(mean=np.zeros(2), sigma=1.3)

    for generation in range(50):
        solutions = []
        for _ in range(optimizer.population_size):
            x = optimizer.ask()
            value = quadratic(x[0], x[1])
            solutions.append((x, value))
            print(f"#{generation} {value} (x1={x[0]}, x2 = {x[1]})")
        optimizer.tell(solutions)

And you can use this library via Optuna [4], an automatic hyperparameter optimization framework. Optuna's built-in CMA-ES sampler which uses this library under the hood is available from v1.3.0 and stabled at v2.0.0. See the documentation or v2.0 release blog for more details.

import optuna

def objective(trial: optuna.Trial):
    x1 = trial.suggest_uniform("x1", -4, 4)
    x2 = trial.suggest_uniform("x2", -4, 4)
    return (x1 - 3) ** 2 + (10 * (x2 + 2)) ** 2

if __name__ == "__main__":
    sampler = optuna.samplers.CmaEsSampler()
    study = optuna.create_study(sampler=sampler)
    study.optimize(objective, n_trials=250)
Example of IPOP-CMA-ES

You can easily implement IPOP-CMA-ES which restarts CMA-ES with increasing population size.

import math
import numpy as np
from cmaes import CMA

def ackley(x1, x2):
    # https://www.sfu.ca/~ssurjano/ackley.html
    return (
        -20 * math.exp(-0.2 * math.sqrt(0.5 * (x1 ** 2 + x2 ** 2)))
        - math.exp(0.5 * (math.cos(2 * math.pi * x1) + math.cos(2 * math.pi * x2)))
        + math.e + 20
    )

if __name__ == "__main__":
    bounds = np.array([[-32.768, 32.768], [-32.768, 32.768]])
    lower_bounds, upper_bounds = bounds[:, 0], bounds[:, 1]

    mean = lower_bounds + (np.random.rand(2) * (upper_bounds - lower_bounds))
    sigma = 32.768 * 2 / 5  # 1/5 of the domain width
    optimizer = CMA(mean=mean, sigma=sigma, bounds=bounds, seed=0)

    for generation in range(200):
        solutions = []
        for _ in range(optimizer.population_size):
            x = optimizer.ask()
            value = ackley(x[0], x[1])
            solutions.append((x, value))
            print(f"#{generation} {value} (x1={x[0]}, x2 = {x[1]})")
        optimizer.tell(solutions)

        if optimizer.should_stop():
            # popsize multiplied by 2 (or 3) before each restart.
            popsize = optimizer.population_size * 2
            mean = lower_bounds + (np.random.rand(2) * (upper_bounds - lower_bounds))
            optimizer = CMA(mean=mean, sigma=sigma, population_size=popsize)
            print(f"Restart CMA-ES with popsize={popsize}")
Example of BIPOP-CMA-ES

Here is an example of BIPOP-CMA-ES which applies two interlaced restart strategies, one with an increasing population size and one with varying small population sizes.

import math
import numpy as np
from cmaes import CMA

def ackley(x1, x2):
    # https://www.sfu.ca/~ssurjano/ackley.html
    return (
        -20 * math.exp(-0.2 * math.sqrt(0.5 * (x1 ** 2 + x2 ** 2)))
        - math.exp(0.5 * (math.cos(2 * math.pi * x1) + math.cos(2 * math.pi * x2)))
        + math.e + 20
    )

if __name__ == "__main__":
    bounds = np.array([[-32.768, 32.768], [-32.768, 32.768]])
    lower_bounds, upper_bounds = bounds[:, 0], bounds[:, 1]

    mean = lower_bounds + (np.random.rand(2) * (upper_bounds - lower_bounds))
    sigma = 32.768 * 2 / 5  # 1/5 of the domain width
    optimizer = CMA(mean=mean, sigma=sigma, bounds=bounds, seed=0)

    n_restarts = 0  # A small restart doesn't count in the n_restarts
    small_n_eval, large_n_eval = 0, 0
    popsize0 = optimizer.population_size
    inc_popsize = 2

    # Initial run is with "normal" population size; it is
    # the large population before first doubling, but its
    # budget accounting is the same as in case of small
    # population.
    poptype = "small"

    for generation in range(200):
        solutions = []
        for _ in range(optimizer.population_size):
            x = optimizer.ask()
            value = ackley(x[0], x[1])
            solutions.append((x, value))
            print(f"#{generation} {value} (x1={x[0]}, x2 = {x[1]})")
        optimizer.tell(solutions)

        if optimizer.should_stop():
            n_eval = optimizer.population_size * optimizer.generation
            if poptype == "small":
                small_n_eval += n_eval
            else:  # poptype == "large"
                large_n_eval += n_eval

            if small_n_eval < large_n_eval:
                poptype = "small"
                popsize_multiplier = inc_popsize ** n_restarts
                popsize = math.floor(
                    popsize0 * popsize_multiplier ** (np.random.uniform() ** 2)
                )
            else:
                poptype = "large"
                n_restarts += 1
                popsize = popsize0 * (inc_popsize ** n_restarts)

            mean = lower_bounds + (np.random.rand(2) * (upper_bounds - lower_bounds))
            optimizer = CMA(
                mean=mean,
                sigma=sigma,
                bounds=bounds,
                population_size=popsize,
            )
            print("Restart CMA-ES with popsize={} ({})".format(popsize, poptype))

Benchmark results

Rosenbrock function Six-Hump Camel function
rosenbrock six-hump-camel

This implementation (green) stands comparison with pycma (blue). See benchmark for details.

Links

Other libraries:

I respect all libraries involved in CMA-ES.

  • pycma : Most famous CMA-ES implementation by Nikolaus Hansen.
  • pymoo : Multi-objective optimization in Python.

References: