-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathcase2.jl
211 lines (186 loc) · 5.99 KB
/
case2.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
using OrdinaryDiffEq, Flux, Optim, Random, Plots
using DiffEqSensitivity
using Zygote
using ForwardDiff
using LinearAlgebra, Statistics
using ProgressBars, Printf
using Flux.Optimise: update!, ExpDecay
using Flux.Losses: mae, mse
using BSON: @save, @load
Random.seed!(1234);
###################################
# Arguments
is_restart = true;
n_epoch = 10000;
n_plot = 50;
datasize = 50;
tstep = 1;
n_exp_train = 20;
n_exp_test = 10;
n_exp = n_exp_train + n_exp_test;
noise = 0.05;
ns = 6;
nr = 3;
alg = AutoTsit5(Rosenbrock23(autodiff=false));
atol = 1e-6;
rtol = 1e-3;
# opt = ADAMW(5.f-3, (0.9, 0.999), 1.f-6);
opt = Flux.Optimiser(ExpDecay(5e-3, 0.5, 500 * n_exp_train, 1e-4),
ADAMW(0.005, (0.9, 0.999), 1.f-6));
lb = 1.f-6;
ub = 1.f1;
####################################
function trueODEfunc(dydt, y, k, t)
# TG(1),ROH(2),DG(3),MG(4),GL(5),R'CO2R(6)
r1 = k[1] * y[1] * y[2];
r2 = k[2] * y[3] * y[2];
r3 = k[3] * y[4] * y[2];
dydt[1] = - r1; # TG
dydt[2] = - r1 - r2 - r3; # TG
dydt[3] = r1 - r2; # DG
dydt[4] = r2 - r3; # MG
dydt[5] = r3; # GL
dydt[6] = r1 + r2 + r3; # R'CO2R
dydt[7] = 0.f0;
end
logA = Float32[18.60f0, 19.13f0, 7.93f0];
Ea = Float32[14.54f0, 14.42f0, 6.47f0]; # kcal/mol
function Arrhenius(logA, Ea, T)
R = 1.98720425864083f-3
k = exp.(logA) .* exp.(-Ea ./ R ./ T)
return k
end
# Generate datasets
u0_list = rand(Float32, (n_exp, ns + 1));
u0_list[:, 1:2] = u0_list[:, 1:2] .* 2.0 .+ 0.2;
u0_list[:, 3:ns] .= 0.0;
u0_list[:, ns + 1] = u0_list[:, ns + 1] .* 20.0 .+ 323.0; # T[K]
tspan = Float32[0.0, datasize * tstep];
tsteps = range(tspan[1], tspan[2], length=datasize);
ode_data_list = zeros(Float32, (n_exp, ns, datasize));
yscale_list = [];
function max_min(ode_data)
return maximum(ode_data, dims=2) .- minimum(ode_data, dims=2) .+ lb
end
for i in 1:n_exp
u0 = u0_list[i, :]
k = Arrhenius(logA, Ea, u0[end])
prob_trueode = ODEProblem(trueODEfunc, u0, tspan, k)
ode_data = Array(solve(prob_trueode, alg, saveat=tsteps))[1:end - 1, :]
ode_data += randn(size(ode_data)) .* ode_data .* noise
ode_data_list[i, :, :] = ode_data
push!(yscale_list, max_min(ode_data))
end
yscale = maximum(hcat(yscale_list...), dims=2);
np = nr * (ns + 2) + 1;
p = randn(Float32, np) .* 0.1;
p[1:nr] .+= 0.8;
p[nr * (ns + 1) + 1:nr * (ns + 2)] .+= 0.8;
p[end] = 0.1;
function p2vec(p)
slope = p[nr * (ns + 2) + 1] .* 100
w_b = p[1:nr] .* slope
w_out = reshape(p[nr + 1:nr * (ns + 1)], ns, nr)
w_in_Ea = abs.(p[nr * (ns + 1) + 1:nr * (ns + 2)] .* slope)
w_in = clamp.(-w_out, 0, 4)
w_in = vcat(w_in, w_in_Ea')
return w_in, w_b, w_out
end
function display_p(p)
w_in, w_b, w_out = p2vec(p);
println("species (column) reaction (row)")
println("w_in | w_b")
w_in_ = vcat(w_in, w_b')'
show(stdout, "text/plain", round.(w_in_, digits=3))
println("\nw_out")
show(stdout, "text/plain", round.(w_out', digits=3))
println("\n")
end
display_p(p)
inv_R = - 1 / 1.98720425864083f-3;
function crnn(du, u, p, t)
logX = @. log(clamp(u[1:end - 1], lb, ub))
w_in_x = w_in' * vcat(logX, inv_R / u[end])
du .= vcat(w_out * (@. exp(w_in_x + w_b)), 0.f0)
end
u0 = u0_list[1, :];
prob = ODEProblem(crnn, u0, tspan, saveat=tsteps, atol=atol, rtol=rtol)
sense = BacksolveAdjoint(checkpointing=true; autojacvec=ZygoteVJP());
function predict_neuralode(u0, p)
global w_in, w_b, w_out = p2vec(p)
pred = clamp.(Array(solve(prob, alg, u0=u0, p=p, sensalg=sense)), -ub, ub)
return pred
end
predict_neuralode(u0, p)
i_obs = [1, 2, 3, 4, 5, 6];
function loss_neuralode(p, i_exp)
ode_data = @view ode_data_list[i_exp, i_obs, :]
pred = predict_neuralode(u0_list[i_exp, :], p)[i_obs, :]
loss = mae(ode_data ./ yscale[i_obs], pred ./ yscale[i_obs])
return loss
end
cbi = function (p, i_exp)
ode_data = ode_data_list[i_exp, :, :]
pred = predict_neuralode(u0_list[i_exp, :], p)
l_plt = []
for i in 1:ns
plt = scatter(tsteps, ode_data[i,:], markercolor=:transparent,
title=string(i), label=string("data_", i))
plot!(plt, tsteps, pred[i,:], label=string("pred_", i))
push!(l_plt, plt)
end
plt_all = plot(l_plt..., legend=false)
png(plt_all, string("figs/i_exp_", i_exp))
return false
end
l_loss_train = []
l_loss_val = []
iter = 1
cb = function (p, loss_train, loss_val)
global l_loss_train, l_loss_val, iter
push!(l_loss_train, loss_train)
push!(l_loss_val, loss_val)
if iter % n_plot == 0
display_p(p)
@printf("min loss train %.4e val %.4e\n", minimum(l_loss_train), minimum(l_loss_val))
l_exp = randperm(n_exp)[1:1];
println("update plot for ", l_exp)
for i_exp in l_exp
cbi(p, i_exp)
end
plt_loss = plot(l_loss_train, xscale=:log10, yscale=:log10,
framestyle=:box, label="Training")
plot!(plt_loss, l_loss_val, label="Validation")
plot!(xlabel="Epoch", ylabel="Loss")
png(plt_loss, "figs/loss")
@save "./checkpoint/mymodel.bson" p opt l_loss_train l_loss_val iter;
end
iter += 1;
end
if is_restart
@load "./checkpoint/mymodel.bson" p opt l_loss_train l_loss_val iter;
iter += 1;
end
i_exp = 1
epochs = ProgressBar(iter:n_epoch);
loss_epoch = zeros(Float32, n_exp);
grad_norm = zeros(Float32, n_exp_train);
for epoch in epochs
global p
for i_exp in randperm(n_exp_train)
grad = ForwardDiff.gradient(x -> loss_neuralode(x, i_exp), p)
grad_norm[i_exp] = norm(grad, 2)
update!(opt, p, grad)
end
for i_exp in 1:n_exp
loss_epoch[i_exp] = loss_neuralode(p, i_exp)
end
loss_train = mean(loss_epoch[1:n_exp_train]);
loss_val = mean(loss_epoch[n_exp_train + 1:end]);
set_description(epochs, string(@sprintf("Loss train %.2e val %.2e gnorm %.1e lr %.1e",
loss_train, loss_val, mean(grad_norm), opt[1].eta)))
cb(p, loss_train, loss_val);
end
for i_exp in 1:n_exp
cbi(p, i_exp)
end