forked from yxgeee/FD-GAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
118 lines (97 loc) · 4.85 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import os, sys
import os.path as osp
import time
import torch
from torch.utils.data import DataLoader
from torch.nn import functional as F
from torch.autograd import Variable
from reid import datasets
from reid.utils.data.preprocessor import Preprocessor
from reid.utils.data.sampler import RandomPairSampler
from reid.utils.data import transforms as T
from reid.evaluators import CascadeEvaluator
from fdgan.options import Options
from fdgan.utils.visualizer import Visualizer
from fdgan.model import FDGANModel
def get_data(name, data_dir, height, width, batch_size, workers, pose_aug):
root = osp.join(data_dir, name)
dataset = datasets.create(name, root)
# use combined trainval set for training as default
train_loader = DataLoader(
Preprocessor(dataset.trainval, root=dataset.images_dir, with_pose=True, pose_root=dataset.poses_dir,
pid_imgs=dataset.trainval_query, height=height, width=width, pose_aug=pose_aug),
sampler=RandomPairSampler(dataset.trainval, neg_pos_ratio=3),
batch_size=batch_size, num_workers=workers, pin_memory=False)
test_transformer = T.Compose([
T.RectScale(height, width),
T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
test_loader = DataLoader(
Preprocessor(list(set(dataset.query) | set(dataset.gallery)),
root=dataset.images_dir, transform=test_transformer),
batch_size=batch_size, num_workers=workers,
shuffle=False, pin_memory=False)
return dataset, train_loader, test_loader
def main():
opt = Options().parse()
dataset, train_loader, test_loader = get_data(opt.dataset, opt.dataroot, opt.height, opt.width, opt.batch_size, opt.workers, opt.pose_aug)
dataset_size = len(dataset.trainval)*4
print('#training images = %d' % dataset_size)
model = FDGANModel(opt)
visualizer = Visualizer(opt)
evaluator = CascadeEvaluator(
torch.nn.DataParallel(model.net_E.module.base_model).cuda(),
model.net_E.module.embed_model,
embed_dist_fn=lambda x: F.softmax(Variable(x), dim=1).data[:, 0])
if opt.stage!=1:
print('Test with baseline model:')
top1, mAP = evaluator.evaluate(test_loader, dataset.query, dataset.gallery, rerank_topk=100, dataset=opt.dataset)
message = '\n Test with baseline model: mAP: {:5.1%} top1: {:5.1%}\n'.format(mAP, top1)
visualizer.print_reid_results(message)
total_steps = 0
best_mAP = 0
for epoch in range(1, opt.niter + opt.niter_decay + 1):
epoch_start_time = time.time()
epoch_iter = 0
model.reset_model_status()
for i, data in enumerate(train_loader):
iter_start_time = time.time()
visualizer.reset()
total_steps += opt.batch_size
epoch_iter += opt.batch_size
model.set_input(data)
model.optimize_parameters()
if total_steps % opt.display_freq == 0:
save_result = total_steps % opt.update_html_freq == 0
visualizer.display_current_results(model.get_current_visuals(), epoch, save_result)
if total_steps % opt.print_freq == 0:
errors = model.get_current_errors()
t = (time.time() - iter_start_time) / opt.batch_size
visualizer.print_current_errors(epoch, epoch_iter, errors, t)
if opt.display_id > 0:
visualizer.plot_current_errors(epoch, float(epoch_iter)/dataset_size, opt, errors)
if epoch % opt.save_step == 0:
print('saving the model at the end of epoch %d, iters %d' % (epoch, total_steps))
model.save(epoch)
if epoch % opt.eval_step == 0 and opt.stage!=1:
mAP = evaluator.evaluate(val_loader, dataset.val, dataset.val, top1=False)
is_best = mAP > best_mAP
best_mAP = max(mAP, best_mAP)
if is_best:
model.save('best')
message = '\n * Finished epoch {:3d} mAP: {:5.1%} best: {:5.1%}{}\n'.format(epoch, mAP, best_mAP, ' *' if is_best else '')
visualizer.print_reid_results(message)
print('End of epoch %d / %d \t Time Taken: %d sec' %
(epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
model.update_learning_rate()
# Final test
if opt.stage!=1:
print('Test with best model:')
checkpoint = load_checkpoint(osp.join(opt.checkpoints, opt.name, '%s_net_%s.pth' % ('best', 'E')))
model.net_E.load_state_dict(checkpoint)
top1, mAP = evaluator.evaluate(test_loader, dataset.query, dataset.gallery, rerank_topk=100, dataset=opt.dataset)
message = '\n Test with best model: mAP: {:5.1%} top1: {:5.1%}\n'.format(mAP, top1)
visualizer.print_reid_results(message)
if __name__ == '__main__':
main()