forked from L1aoXingyu/pytorch-beginner
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcustom_data_io.py
49 lines (41 loc) · 1.33 KB
/
custom_data_io.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from torch.utils.data import Dataset
from PIL import Image
import os
def default_loader(img):
return Image.open(img)
class custom_dset(Dataset):
def __init__(self,
img_path,
txt_path,
img_transform=None,
loader=default_loader):
with open(txt_path, 'r') as f:
lines = f.readlines()
self.img_list = [
os.path.join(img_path, i.split()[0]) for i in lines
]
self.label_list = [i.split()[1] for i in lines]
self.img_transform = img_transform
self.loader = loader
def __getitem__(self, index):
img_path = self.img_list[index]
label = self.label_list[index]
# img = self.loader(img_path)
img = img_path
if self.img_transform is not None:
img = self.img_transform(img)
return img, label
def __len__(self):
return len(self.label_list)
def collate_fn(batch):
batch.sort(key=lambda x: len(x[1]), reverse=True)
img, label = zip(*batch)
pad_label = []
lens = []
max_len = len(label[0])
for i in range(len(label)):
temp_label = [0] * max_len
temp_label[:len(label[i])] = label[i]
pad_label.append(temp_label)
lens.append(len(label[i]))
return img, pad_label, lens