forked from NVIDIA/FastPhotoStyle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconverter.py
130 lines (113 loc) · 3.82 KB
/
converter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import os
import torch
import torch.nn as nn
from torch.utils.serialization import load_lua
from models import VGGEncoder, VGGDecoder
from photo_wct import PhotoWCT
def weight_assign(lua, pth, maps):
for k, v in maps.items():
getattr(pth, k).weight = nn.Parameter(lua.get(v).weight.float())
getattr(pth, k).bias = nn.Parameter(lua.get(v).bias.float())
def photo_wct_loader(p_wct):
p_wct.e1.load_state_dict(torch.load('pth_models/vgg_normalised_conv1.pth'))
p_wct.d1.load_state_dict(torch.load('pth_models/feature_invertor_conv1.pth'))
p_wct.e2.load_state_dict(torch.load('pth_models/vgg_normalised_conv2.pth'))
p_wct.d2.load_state_dict(torch.load('pth_models/feature_invertor_conv2.pth'))
p_wct.e3.load_state_dict(torch.load('pth_models/vgg_normalised_conv3.pth'))
p_wct.d3.load_state_dict(torch.load('pth_models/feature_invertor_conv3.pth'))
p_wct.e4.load_state_dict(torch.load('pth_models/vgg_normalised_conv4.pth'))
p_wct.d4.load_state_dict(torch.load('pth_models/feature_invertor_conv4.pth'))
if __name__ == '__main__':
if not os.path.exists('pth_models'):
os.mkdir('pth_models')
## VGGEncoder1
vgg1 = load_lua('models/vgg_normalised_conv1_1_mask.t7')
e1 = VGGEncoder(1)
weight_assign(vgg1, e1, {
'conv0': 0,
'conv1_1': 2,
})
torch.save(e1.state_dict(), 'pth_models/vgg_normalised_conv1.pth')
## VGGDecoder1
inv1 = load_lua('models/feature_invertor_conv1_1_mask.t7')
d1 = VGGDecoder(1)
weight_assign(inv1, d1, {
'conv1_1': 1,
})
torch.save(d1.state_dict(), 'pth_models/feature_invertor_conv1.pth')
## VGGEncoder2
vgg2 = load_lua('models/vgg_normalised_conv2_1_mask.t7')
e2 = VGGEncoder(2)
weight_assign(vgg2, e2, {
'conv0': 0,
'conv1_1': 2,
'conv1_2': 5,
'conv2_1': 9,
})
torch.save(e2.state_dict(), 'pth_models/vgg_normalised_conv2.pth')
## VGGDecoder2
inv2 = load_lua('models/feature_invertor_conv2_1_mask.t7')
d2 = VGGDecoder(2)
weight_assign(inv2, d2, {
'conv2_1': 1,
'conv1_2': 5,
'conv1_1': 8,
})
torch.save(d2.state_dict(), 'pth_models/feature_invertor_conv2.pth')
## VGGEncoder3
vgg3 = load_lua('models/vgg_normalised_conv3_1_mask.t7')
e3 = VGGEncoder(3)
weight_assign(vgg3, e3, {
'conv0': 0,
'conv1_1': 2,
'conv1_2': 5,
'conv2_1': 9,
'conv2_2': 12,
'conv3_1': 16,
})
torch.save(e3.state_dict(), 'pth_models/vgg_normalised_conv3.pth')
## VGGDecoder3
inv3 = load_lua('models/feature_invertor_conv3_1_mask.t7')
d3 = VGGDecoder(3)
weight_assign(inv3, d3, {
'conv3_1': 1,
'conv2_2': 5,
'conv2_1': 8,
'conv1_2': 12,
'conv1_1': 15,
})
torch.save(d3.state_dict(), 'pth_models/feature_invertor_conv3.pth')
## VGGEncoder4
vgg4 = load_lua('models/vgg_normalised_conv4_1_mask.t7')
e4 = VGGEncoder(4)
weight_assign(vgg4, e4, {
'conv0': 0,
'conv1_1': 2,
'conv1_2': 5,
'conv2_1': 9,
'conv2_2': 12,
'conv3_1': 16,
'conv3_2': 19,
'conv3_3': 22,
'conv3_4': 25,
'conv4_1': 29,
})
torch.save(e4.state_dict(), 'pth_models/vgg_normalised_conv4.pth')
## VGGDecoder4
inv4 = load_lua('models/feature_invertor_conv4_1_mask.t7')
d4 = VGGDecoder(4)
weight_assign(inv4, d4, {
'conv4_1': 1,
'conv3_4': 5,
'conv3_3': 8,
'conv3_2': 11,
'conv3_1': 14,
'conv2_2': 18,
'conv2_1': 21,
'conv1_2': 25,
'conv1_1': 28,
})
torch.save(d4.state_dict(), 'pth_models/feature_invertor_conv4.pth')
p_wct = PhotoWCT()
photo_wct_loader(p_wct)
torch.save(p_wct.state_dict(), 'PhotoWCTModels/photo_wct.pth')