forked from mne-tools/mne-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
plot_introduction.py
378 lines (280 loc) · 13.3 KB
/
plot_introduction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
# -*- coding: utf-8 -*-
"""
.. _intro_tutorial:
Basic MEG and EEG data processing
=================================
MNE-Python reimplements most of MNE-C's (the original MNE command line utils)
functionality and offers transparent scripting.
On top of that it extends MNE-C's functionality considerably (customize events,
compute
contrasts, group statistics, time-frequency analysis, EEG-sensor space analyses
, etc.) It uses the same files as standard MNE unix commands:
no need to convert your files to a new system or database.
What you can do with MNE Python
-------------------------------
- **Raw data visualization** to visualize recordings, can also use
*mne_browse_raw* for extended functionality (see :ref:`ch_browse`)
- **Epoching**: Define epochs, baseline correction, handle conditions etc.
- **Averaging** to get Evoked data
- **Compute SSP pojectors** to remove ECG and EOG artifacts
- **Compute ICA** to remove artifacts or select latent sources.
- **Maxwell filtering** to remove environmental noise.
- **Boundary Element Modeling**: single and three-layer BEM model
creation and solution computation.
- **Forward modeling**: BEM computation and mesh creation
(see :ref:`ch_forward`)
- **Linear inverse solvers** (dSPM, sLORETA, MNE, LCMV, DICS)
- **Sparse inverse solvers** (L1/L2 mixed norm MxNE, Gamma Map,
Time-Frequency MxNE)
- **Connectivity estimation** in sensor and source space
- **Visualization of sensor and source space data**
- **Time-frequency** analysis with Morlet wavelets (induced power,
intertrial coherence, phase lock value) also in the source space
- **Spectrum estimation** using multi-taper method
- **Mixed Source Models** combining cortical and subcortical structures
- **Dipole Fitting**
- **Decoding** multivariate pattern analyis of M/EEG topographies
- **Compute contrasts** between conditions, between sensors, across
subjects etc.
- **Non-parametric statistics** in time, space and frequency
(including cluster-level)
- **Scripting** (batch and parallel computing)
What you're not supposed to do with MNE Python
----------------------------------------------
- **Brain and head surface segmentation** for use with BEM
models -- use Freesurfer.
- **Raw movement compensation** -- use Elekta Maxfilter™
.. note:: This package is based on the FIF file format from Neuromag. It
can read and convert CTF, BTI/4D, KIT and various EEG formats to
FIF.
Installation of the required materials
---------------------------------------
See :ref:`getting_started` with Python.
.. note:: The expected location for the MNE-sample data is
my-path-to/mne-python/examples. If you downloaded data and an example asks
you whether to download it again, make sure
the data reside in the examples directory and you run the script from its
current directory.
From IPython e.g. say::
cd examples/preprocessing
%run plot_find_ecg_artifacts.py
From raw data to evoked data
----------------------------
.. _ipython: http://ipython.scipy.org/
Now, launch `ipython`_ (Advanced Python shell) using the QT backend which best
supported across systems::
$ ipython --pylab -qt
First, load the mne package:
"""
import mne
##############################################################################
# If you'd like to turn information status messages off:
mne.set_log_level('WARNING')
##############################################################################
# But it's generally a good idea to leave them on:
mne.set_log_level('INFO')
##############################################################################
# You can set the default level by setting the environment variable
# "MNE_LOGGING_LEVEL", or by having mne-python write preferences to a file:
mne.set_config('MNE_LOGGING_LEVEL','WARNING')
##############################################################################
# Note that the location of the mne-python preferences file (for easier manual
# editing) can be found using:
mne.get_config_path()
##############################################################################
# By default logging messages print to the console, but look at
# mne.set_log_file() to save output to a file.
#
# Access raw data
# ^^^^^^^^^^^^^^^
from mne.datasets import sample
data_path = sample.data_path()
raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif'
print(raw_fname)
##############################################################################
# .. note:: The MNE sample dataset should be downloaded automatically but be
# patient (approx. 2GB)
#
# Read data from file:
raw = mne.io.Raw(raw_fname)
print(raw)
print(raw.info)
##############################################################################
# Look at the channels in raw:
print(raw.ch_names)
##############################################################################
# Read and plot a segment of raw data
start, stop = raw.time_as_index([100, 115]) # 100 s to 115 s data segment
data, times = raw[:, start:stop]
print(data.shape)
print(times.shape)
data, times = raw[2:20:3, start:stop] # access underlying data
raw.plot()
##############################################################################
# Save a segment of 150s of raw data (MEG only):
picks = mne.pick_types(raw.info, meg=True, eeg=False, stim=True,
exclude='bads')
raw.save('sample_audvis_meg_raw.fif', tmin=0, tmax=150, picks=picks,
overwrite=True)
##############################################################################
# Define and read epochs
# ^^^^^^^^^^^^^^^^^^^^^^
#
# First extract events:
events = mne.find_events(raw, stim_channel='STI 014')
print(events[:5])
##############################################################################
# Note that, by default, we use stim_channel='STI 014'. If you have a different
# system (e.g., a newer system that uses channel 'STI101' by default), you can
# use the following to set the default stim channel to use for finding events:
mne.set_config('MNE_STIM_CHANNEL', 'STI101')
##############################################################################
# Events are stored as 2D numpy array where the first column is the time
# instant and the last one is the event number. It is therefore easy to
# manipulate.
#
# Define epochs parameters:
event_id = dict(aud_l=1, aud_r=2) # event trigger and conditions
tmin = -0.2 # start of each epoch (200ms before the trigger)
tmax = 0.5 # end of each epoch (500ms after the trigger)
##############################################################################
# Exclude some channels (original bads + 2 more):
raw.info['bads'] += ['MEG 2443', 'EEG 053']
##############################################################################
# The variable raw.info['bads'] is just a python list.
#
# Pick the good channels, excluding raw.info['bads']:
picks = mne.pick_types(raw.info, meg=True, eeg=True, eog=True, stim=False,
exclude='bads')
##############################################################################
# Alternatively one can restrict to magnetometers or gradiometers with:
mag_picks = mne.pick_types(raw.info, meg='mag', eog=True, exclude='bads')
grad_picks = mne.pick_types(raw.info, meg='grad', eog=True, exclude='bads')
##############################################################################
# Define the baseline period:
baseline = (None, 0) # means from the first instant to t = 0
##############################################################################
# Define peak-to-peak rejection parameters for gradiometers, magnetometers and EOG:
reject = dict(grad=4000e-13, mag=4e-12, eog=150e-6)
##############################################################################
# Read epochs:
epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True, picks=picks,
baseline=baseline, preload=False, reject=reject)
print(epochs)
##############################################################################
# Get single epochs for one condition:
epochs_data = epochs['aud_l'].get_data()
print(epochs_data.shape)
##############################################################################
# epochs_data is a 3D array of dimension (55 epochs, 365 channels, 106 time
# instants).
#
# Scipy supports read and write of matlab files. You can save your single
# trials with:
from scipy import io
io.savemat('epochs_data.mat', dict(epochs_data=epochs_data), oned_as='row')
##############################################################################
# or if you want to keep all the information about the data you can save your
# epochs in a fif file:
epochs.save('sample-epo.fif')
##############################################################################
# and read them later with:
saved_epochs = mne.read_epochs('sample-epo.fif')
##############################################################################
# Compute evoked responses for auditory responses by averaging and plot it:
evoked = epochs['aud_l'].average()
print(evoked)
evoked.plot()
##############################################################################
# .. topic:: Exercise
#
# 1. Extract the max value of each epoch
max_in_each_epoch = [e.max() for e in epochs['aud_l']] # doctest:+ELLIPSIS
print(max_in_each_epoch[:4]) # doctest:+ELLIPSIS
##############################################################################
# It is also possible to read evoked data stored in a fif file:
evoked_fname = data_path + '/MEG/sample/sample_audvis-ave.fif'
evoked1 = mne.read_evokeds(
evoked_fname, condition='Left Auditory', baseline=(None, 0), proj=True)
##############################################################################
# Or another one stored in the same file:
evoked2 = mne.read_evokeds(
evoked_fname, condition='Right Auditory', baseline=(None, 0), proj=True)
##############################################################################
# Compute a contrast:
contrast = evoked1 - evoked2
print(contrast)
##############################################################################
# Time-Frequency: Induced power and inter trial coherence
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# Define parameters:
import numpy as np
n_cycles = 2 # number of cycles in Morlet wavelet
freqs = np.arange(7, 30, 3) # frequencies of interest
##############################################################################
# Compute induced power and phase-locking values and plot gradiometers:
from mne.time_frequency import tfr_morlet
power, itc = tfr_morlet(epochs, freqs=freqs, n_cycles=n_cycles,
return_itc=True, decim=3, n_jobs=1)
# power.plot()
##############################################################################
# Inverse modeling: MNE and dSPM on evoked and raw data
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# Import the required functions:
from mne.minimum_norm import apply_inverse, read_inverse_operator
##############################################################################
# Read the inverse operator:
fname_inv = data_path + '/MEG/sample/sample_audvis-meg-oct-6-meg-inv.fif'
inverse_operator = read_inverse_operator(fname_inv)
##############################################################################
# Define the inverse parameters:
snr = 3.0
lambda2 = 1.0 / snr ** 2
method = "dSPM"
##############################################################################
# Compute the inverse solution:
stc = apply_inverse(evoked, inverse_operator, lambda2, method)
##############################################################################
# Save the source time courses to disk:
stc.save('mne_dSPM_inverse')
##############################################################################
# Now, let's compute dSPM on a raw file within a label:
fname_label = data_path + '/MEG/sample/labels/Aud-lh.label'
label = mne.read_label(fname_label)
##############################################################################
# Compute inverse solution during the first 15s:
from mne.minimum_norm import apply_inverse_raw
start, stop = raw.time_as_index([0, 15]) # read the first 15s of data
stc = apply_inverse_raw(raw, inverse_operator, lambda2, method, label,
start, stop)
##############################################################################
# Save result in stc files:
stc.save('mne_dSPM_raw_inverse_Aud')
##############################################################################
# What else can you do?
# ^^^^^^^^^^^^^^^^^^^^^
#
# - detect heart beat QRS component
# - detect eye blinks and EOG artifacts
# - compute SSP projections to remove ECG or EOG artifacts
# - compute Independent Component Analysis (ICA) to remove artifacts or
# select latent sources
# - estimate noise covariance matrix from Raw and Epochs
# - visualize cross-trial response dynamics using epochs images
# - compute forward solutions
# - estimate power in the source space
# - estimate connectivity in sensor and source space
# - morph stc from one brain to another for group studies
# - compute mass univariate statistics base on custom contrasts
# - visualize source estimates
# - export raw, epochs, and evoked data to other python data analysis
# libraries e.g. pandas
# - and many more things ...
#
# Want to know more ?
# ^^^^^^^^^^^^^^^^^^^
#
# Browse :ref:`examples-index` gallery.
print("Done!")