forked from mne-tools/mne-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
baseline.py
129 lines (114 loc) · 4.34 KB
/
baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
"""Util function to baseline correct data."""
# Authors: Alexandre Gramfort <[email protected]>
#
# License: BSD (3-clause)
import numpy as np
from .utils import logger, verbose, _check_option
def _log_rescale(baseline, mode='mean'):
"""Log the rescaling method."""
if baseline is not None:
_check_option('mode', mode, ['logratio', 'ratio', 'zscore', 'mean',
'percent', 'zlogratio'])
msg = 'Applying baseline correction (mode: %s)' % mode
else:
msg = 'No baseline correction applied'
return msg
@verbose
def rescale(data, times, baseline, mode='mean', copy=True, picks=None,
verbose=None):
"""Rescale (baseline correct) data.
Parameters
----------
data : array
It can be of any shape. The only constraint is that the last
dimension should be time.
times : 1D array
Time instants is seconds.
baseline : tuple or list of length 2, or None
The time interval to apply rescaling / baseline correction.
If None do not apply it. If baseline is ``(bmin, bmax)``
the interval is between ``bmin`` (s) and ``bmax`` (s).
If ``bmin is None`` the beginning of the data is used
and if ``bmax is None`` then ``bmax`` is set to the end of the
interval. If baseline is ``(None, None)`` the entire time
interval is used. If baseline is None, no correction is applied.
mode : 'mean' | 'ratio' | 'logratio' | 'percent' | 'zscore' | 'zlogratio'
Perform baseline correction by
- subtracting the mean of baseline values ('mean')
- dividing by the mean of baseline values ('ratio')
- dividing by the mean of baseline values and taking the log
('logratio')
- subtracting the mean of baseline values followed by dividing by
the mean of baseline values ('percent')
- subtracting the mean of baseline values and dividing by the
standard deviation of baseline values ('zscore')
- dividing by the mean of baseline values, taking the log, and
dividing by the standard deviation of log baseline values
('zlogratio')
copy : bool
Whether to return a new instance or modify in place.
picks : list of int | None
Data to process along the axis=-2 (None, default, processes all).
%(verbose)s
Returns
-------
data_scaled: array
Array of same shape as data after rescaling.
"""
data = data.copy() if copy else data
msg = _log_rescale(baseline, mode)
logger.info(msg)
if baseline is None or data.shape[-1] == 0:
return data
bmin, bmax = baseline
if bmin is None:
imin = 0
else:
imin = np.where(times >= bmin)[0]
if len(imin) == 0:
raise ValueError('bmin is too large (%s), it exceeds the largest '
'time value' % (bmin,))
imin = int(imin[0])
if bmax is None:
imax = len(times)
else:
imax = np.where(times <= bmax)[0]
if len(imax) == 0:
raise ValueError('bmax is too small (%s), it is smaller than the '
'smallest time value' % (bmax,))
imax = int(imax[-1]) + 1
if imin >= imax:
raise ValueError('Bad rescaling slice (%s:%s) from time values %s, %s'
% (imin, imax, bmin, bmax))
# technically this is inefficient when `picks` is given, but assuming
# that we generally pick most channels for rescaling, it's not so bad
mean = np.mean(data[..., imin:imax], axis=-1, keepdims=True)
if mode == 'mean':
def fun(d, m):
d -= m
elif mode == 'ratio':
def fun(d, m):
d /= m
elif mode == 'logratio':
def fun(d, m):
d /= m
np.log10(d, out=d)
elif mode == 'percent':
def fun(d, m):
d -= m
d /= m
elif mode == 'zscore':
def fun(d, m):
d -= m
d /= np.std(d[..., imin:imax], axis=-1, keepdims=True)
elif mode == 'zlogratio':
def fun(d, m):
d /= m
np.log10(d, out=d)
d /= np.std(d[..., imin:imax], axis=-1, keepdims=True)
if picks is None:
fun(data, mean)
else:
for pi in picks:
fun(data[..., pi, :], mean[..., pi, :])
return data