forked from mne-tools/mne-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
morph.py
1209 lines (1047 loc) · 48 KB
/
morph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Author(s): Tommy Clausner <[email protected]>
# Alexandre Gramfort <[email protected]>
# Eric Larson <[email protected]>
# License: BSD (3-clause)
import os.path as op
import warnings
import copy
import numpy as np
from scipy import sparse
from .parallel import parallel_func
from .source_estimate import (VolSourceEstimate, SourceEstimate,
VolVectorSourceEstimate, VectorSourceEstimate,
_get_ico_tris)
from .source_space import SourceSpaces
from .surface import read_morph_map, mesh_edges, read_surface, _compute_nearest
from .utils import (logger, verbose, check_version, get_subjects_dir,
warn as warn_, deprecated, fill_doc, _check_option,
BunchConst)
from .externals.h5io import read_hdf5, write_hdf5
@verbose
def compute_source_morph(src, subject_from=None, subject_to='fsaverage',
subjects_dir=None, zooms=5,
niter_affine=(100, 100, 10), niter_sdr=(5, 5, 3),
spacing=5, smooth=None, warn=True, xhemi=False,
sparse=False, verbose=False):
"""Create a SourceMorph from one subject to another.
Method is based on spherical morphing by FreeSurfer for surface
cortical estimates [1]_ and Symmetric Diffeomorphic Registration
for volumic data [2]_.
Parameters
----------
src : instance of SourceSpaces | instance of SourceEstimate
The SourceSpaces of subject_from (can be a
SourceEstimate if only using a surface source space).
subject_from : str | None
Name of the original subject as named in the SUBJECTS_DIR.
If None (default), then ``src[0]['subject_his_id]'`` will be used.
subject_to : str
Name of the subject to which to morph as named in the SUBJECTS_DIR.
subjects_dir : str | None
Path to SUBJECTS_DIR if it is not set in the environment. The default
is None.
zooms : float | tuple | None
The voxel size of volume for each spatial dimension in mm.
If spacing is None, MRIs won't be resliced, and both volumes
must have the same number of spatial dimensions.
niter_affine : tuple of int
Number of levels (``len(niter_affine)``) and number of
iterations per level - for each successive stage of iterative
refinement - to perform the affine transform.
Default is niter_affine=(100, 100, 10).
niter_sdr : tuple of int
Number of levels (``len(niter_sdr)``) and number of
iterations per level - for each successive stage of iterative
refinement - to perform the Symmetric Diffeomorphic Registration (sdr)
transform. Default is niter_sdr=(5, 5, 3).
spacing : int | list | None
The resolution of the icosahedral mesh (typically 5).
If None, all vertices will be used (potentially filling the
surface). If a list, then values will be morphed to the set of
vertices specified in in ``spacing[0]`` and ``spacing[1]``.
smooth : int | None
Number of iterations for the smoothing of the surface data.
If None, smooth is automatically defined to fill the surface
with non-zero values. The default is spacing=None.
warn : bool
If True, warn if not all vertices were used. The default is warn=True.
xhemi : bool
Morph across hemisphere. Currently only implemented for
``subject_to == subject_from``. See notes below.
The default is xhemi=False.
sparse : bool
Morph as a sparse source estimate. Works only with (Vector)
SourceEstimate. If True the only parameters used are subject_to and
subject_from, and spacing has to be None. Default is sparse=False.
%(verbose)s
Notes
-----
This function can be used to morph data between hemispheres by setting
``xhemi=True``. The full cross-hemisphere morph matrix maps left to right
and right to left. A matrix for cross-mapping only one hemisphere can be
constructed by specifying the appropriate vertices, for example, to map the
right hemisphere to the left:
``vertices_from=[[], vert_rh], vertices_to=[vert_lh, []]``.
Cross-hemisphere mapping requires appropriate ``sphere.left_right``
morph-maps in the subject's directory. These morph maps are included
with the ``fsaverage_sym`` FreeSurfer subject, and can be created for other
subjects with the ``mris_left_right_register`` FreeSurfer command. The
``fsaverage_sym`` subject is included with FreeSurfer > 5.1 and can be
obtained as described `here
<http://surfer.nmr.mgh.harvard.edu/fswiki/Xhemi>`_. For statistical
comparisons between hemispheres, use of the symmetric ``fsaverage_sym``
model is recommended to minimize bias [1]_.
.. versionadded:: 0.17.0
References
----------
.. [1] Greve D. N., Van der Haegen L., Cai Q., Stufflebeam S., Sabuncu M.
R., Fischl B., Brysbaert M.
A Surface-based Analysis of Language Lateralization and Cortical
Asymmetry. Journal of Cognitive Neuroscience 25(9), 1477-1492, 2013.
.. [2] Avants, B. B., Epstein, C. L., Grossman, M., & Gee, J. C. (2009).
Symmetric Diffeomorphic Image Registration with Cross- Correlation:
Evaluating Automated Labeling of Elderly and Neurodegenerative
Brain, 12(1), 26-41.
"""
if isinstance(src, (SourceEstimate, VectorSourceEstimate)):
src_data = dict(vertices_from=copy.deepcopy(src.vertices))
kind = 'surface'
subject_from = _check_subject_from(subject_from, src.subject)
else:
src_data, kind = _get_src_data(src)
subject_from = _check_subject_from(subject_from, src)
if not isinstance(subject_to, str):
raise TypeError('subject_to must be str, got type %s (%s)'
% (type(subject_to), subject_to))
del src
# Params
warn = False if sparse else warn
if kind not in 'surface' and xhemi:
raise ValueError('Inter-hemispheric morphing can only be used '
'with surface source estimates.')
if sparse and kind != 'surface':
raise ValueError('Only surface source estimates can compute a '
'sparse morph.')
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
# VolSourceEstimate
shape = affine = pre_affine = sdr_morph = None
morph_mat = vertices_to = None
if kind == 'volume':
_check_dep(nibabel='2.1.0', dipy=False)
logger.info('volume source space inferred...')
import nibabel as nib
# load moving MRI
mri_subpath = op.join('mri', 'brain.mgz')
mri_path_from = op.join(subjects_dir, subject_from, mri_subpath)
logger.info('loading %s as "from" volume' % mri_path_from)
with warnings.catch_warnings():
mri_from = nib.load(mri_path_from)
# eventually we could let this be some other volume, but for now
# let's KISS and use `brain.mgz`, too
mri_path_to = op.join(subjects_dir, subject_to, mri_subpath)
if not op.isfile(mri_path_to):
raise IOError('cannot read file: %s' % mri_path_to)
logger.info('loading %s as "to" volume' % mri_path_to)
with warnings.catch_warnings():
mri_to = nib.load(mri_path_to)
# pre-compute non-linear morph
shape, zooms, affine, pre_affine, sdr_morph = _compute_morph_sdr(
mri_from, mri_to, niter_affine, niter_sdr, zooms)
elif kind == 'surface':
logger.info('surface source space inferred...')
vertices_from = src_data['vertices_from']
if sparse:
if spacing is not None:
raise ValueError('spacing must be set to None if '
'sparse=True.')
if xhemi:
raise ValueError('xhemi=True can only be used with '
'sparse=False')
vertices_to, morph_mat = _compute_sparse_morph(
vertices_from, subject_from, subject_to, subjects_dir)
else:
vertices_to = grade_to_vertices(
subject_to, spacing, subjects_dir, 1)
morph_mat = _compute_morph_matrix(
subject_from=subject_from, subject_to=subject_to,
vertices_from=vertices_from, vertices_to=vertices_to,
subjects_dir=subjects_dir, smooth=smooth, warn=warn,
xhemi=xhemi)
n_verts = sum(len(v) for v in vertices_to)
assert morph_mat.shape[0] == n_verts
morph = SourceMorph(subject_from, subject_to, kind, zooms,
niter_affine, niter_sdr, spacing, smooth, xhemi,
morph_mat, vertices_to, shape, affine,
pre_affine, sdr_morph, src_data)
logger.info('[done]')
return morph
def _compute_sparse_morph(vertices_from, subject_from, subject_to,
subjects_dir=None):
"""Get nearest vertices from one subject to another."""
maps = read_morph_map(subject_to, subject_from, subjects_dir)
cnt = 0
vertices = list()
cols = list()
for verts, map_hemi in zip(vertices_from, maps):
vertno_h = _sparse_argmax_nnz_row(map_hemi[verts])
order = np.argsort(vertno_h)
cols.append(cnt + order)
vertices.append(vertno_h[order])
cnt += len(vertno_h)
cols = np.concatenate(cols)
rows = np.arange(len(cols))
data = np.ones(len(cols))
morph_mat = sparse.coo_matrix((data, (rows, cols)),
shape=(len(cols), len(cols))).tocsr()
return vertices, morph_mat
_SOURCE_MORPH_ATTRIBUTES = [ # used in writing
'subject_from', 'subject_to', 'kind', 'zooms', 'niter_affine', 'niter_sdr',
'spacing', 'smooth', 'xhemi', 'morph_mat', 'vertices_to',
'shape', 'affine', 'pre_affine', 'sdr_morph', 'src_data', 'verbose']
@fill_doc
class SourceMorph(object):
"""Morph source space data from one subject to another.
.. note:: This class should not be instantiated directly.
Use :func:`mne.compute_source_morph` instead.
.. versionadded:: 0.17
Parameters
----------
subject_from : str | None
Name of the subject from which to morph as named in the SUBJECTS_DIR.
subject_to : str | array | list of array
Name of the subject on which to morph as named in the SUBJECTS_DIR.
The default is 'fsaverage'. If morphing a volume source space,
subject_to can be the path to a MRI volume. Can also be a list of
two arrays if morphing to hemisphere surfaces.
kind : str | None
Kind of source estimate. E.g. 'volume' or 'surface'.
zooms : float | tuple
See :func:`mne.compute_source_morph`.
niter_affine : tuple of int
Number of levels (``len(niter_affine)``) and number of
iterations per level - for each successive stage of iterative
refinement - to perform the affine transform.
niter_sdr : tuple of int
Number of levels (``len(niter_sdr)``) and number of
iterations per level - for each successive stage of iterative
refinement - to perform the Symmetric Diffeomorphic Registration (sdr)
transform [2]_.
spacing : int | list | None
See :func:`mne.compute_source_morph`.
smooth : int | None
Number of iterations for the smoothing of the surface data.
If None, smooth is automatically defined to fill the surface
with non-zero values.
xhemi : bool
Morph across hemisphere.
morph_mat : scipy.sparse.csr_matrix
The sparse surface morphing matrix for spherical surface
based morphing [1]_.
vertices_to : list of ndarray
The destination surface vertices.
shape : tuple
The volume MRI shape.
affine : ndarray
The volume MRI affine.
pre_affine : instance of dipy.align.imaffine.AffineMap
The :class:`dipy.align.imaffine.AffineMap` transformation that is
applied before the before ``sdr_morph``.
sdr_morph : instance of dipy.align.imwarp.DiffeomorphicMap
The :class:`dipy.align.imwarp.DiffeomorphicMap` that applies the
the symmetric diffeomorphic registration (SDR) morph.
src_data : dict
Additional source data necessary to perform morphing.
%(verbose)s
References
----------
.. [1] Greve D. N., Van der Haegen L., Cai Q., Stufflebeam S., Sabuncu M.
R., Fischl B., Brysbaert M.
A Surface-based Analysis of Language Lateralization and Cortical
Asymmetry. Journal of Cognitive Neuroscience 25(9), 1477-1492, 2013.
.. [2] Avants, B. B., Epstein, C. L., Grossman, M., & Gee, J. C. (2009).
Symmetric Diffeomorphic Image Registration with Cross- Correlation:
Evaluating Automated Labeling of Elderly and Neurodegenerative
Brain, 12(1), 26-41.
"""
def __init__(self, subject_from, subject_to, kind, zooms,
niter_affine, niter_sdr, spacing, smooth, xhemi,
morph_mat, vertices_to, shape,
affine, pre_affine, sdr_morph, src_data, verbose=None):
# universal
self.subject_from = subject_from
self.subject_to = subject_to
self.kind = kind
# vol input
self.zooms = zooms
self.niter_affine = niter_affine
self.niter_sdr = niter_sdr
# surf input
self.spacing = spacing
self.smooth = smooth
self.xhemi = xhemi
# surf computed
self.morph_mat = morph_mat
self.vertices_to = vertices_to
# vol computed
self.shape = shape
self.affine = affine
self.sdr_morph = sdr_morph
self.pre_affine = pre_affine
# used by both
self.src_data = src_data
self.verbose = verbose
@verbose
def apply(self, stc_from, output='stc', mri_resolution=False,
mri_space=False, verbose=None):
"""Morph source space data.
Parameters
----------
stc_from : VolSourceEstimate | VolVectorSourceEstimate | SourceEstimate | VectorSourceEstimate
The source estimate to morph.
output : str
Can be 'stc' (default), 'nifti1', or 'nifti2'.
If a V
mri_resolution: bool | tuple | int | float
If True the image is saved in MRI resolution. Default False.
WARNING: if you have many time points the file produced can be
huge. The default is mri_resolution=False.
mri_space : bool
Whether the image to world registration should be in mri space. The
default is mri_space=mri_resolution.
%(verbose_meth)s
Returns
-------
stc_to : VolSourceEstimate | SourceEstimate | VectorSourceEstimate | Nifti1Image | Nifti2Image
The morphed source estimates.
""" # noqa: E501
stc = copy.deepcopy(stc_from)
mri_space = mri_resolution if mri_space is None else mri_space
if stc.subject is None:
stc.subject = self.subject_from
if self.subject_from is None:
self.subject_from = stc.subject
if stc.subject != self.subject_from:
raise ValueError('stc_from.subject and '
'morph.subject_from must match. (%s != %s)' %
(stc.subject, self.subject_from))
if not isinstance(output, str):
raise TypeError('output must be str, got type %s (%s)'
% (type(output), output))
out = _apply_morph_data(self, stc)
if output != 'stc': # convert to volume
out = _morphed_stc_as_volume(
self, out, mri_resolution=mri_resolution, mri_space=mri_space,
output=output)
return out
def __repr__(self): # noqa: D105
s = u"%s" % self.kind
s += u", %s -> %s" % (self.subject_from, self.subject_to)
if self.kind == 'volume':
s += ", zooms : {}".format(self.zooms)
s += ", niter_affine : {}".format(self.niter_affine)
s += ", niter_sdr : {}".format(self.niter_sdr)
elif self.kind in ('surface', 'vector'):
s += ", spacing : {}".format(self.spacing)
s += ", smooth : %s" % self.smooth
s += ", xhemi" if self.xhemi else ""
return "<SourceMorph | %s>" % s
@verbose
def save(self, fname, overwrite=False, verbose=None):
"""Save the morph for source estimates to a file.
Parameters
----------
fname : str
The stem of the file name. '-morph.h5' will be added if fname does
not end with '.h5'
overwrite : bool
If True, overwrite existing file.
%(verbose_meth)s
"""
if not fname.endswith('.h5'):
fname = '%s-morph.h5' % fname
out_dict = {k: getattr(self, k) for k in _SOURCE_MORPH_ATTRIBUTES}
for key in ('pre_affine', 'sdr_morph'): # classes
if out_dict[key] is not None:
out_dict[key] = out_dict[key].__dict__
write_hdf5(fname, out_dict, overwrite=overwrite)
###############################################################################
# I/O
def _check_subject_from(subject_from, src):
if isinstance(src, str):
subject_check = src
elif src is None: # assume it's correct although dangerous but unlikely
subject_check = subject_from
else:
subject_check = src[0]['subject_his_id']
if subject_from is None:
subject_from = subject_check
elif subject_check is not None and subject_from != subject_check:
raise ValueError('subject_from does not match source space subject'
' (%s != %s)' % (subject_from, subject_check))
if subject_from is None:
raise ValueError('subject_from could not be inferred, it must be '
'specified')
return subject_from
def read_source_morph(fname):
"""Load the morph for source estimates from a file.
Parameters
----------
fname : str
Full filename including path.
Returns
-------
source_morph : instance of SourceMorph
The loaded morph.
"""
vals = read_hdf5(fname)
if vals['pre_affine'] is not None: # reconstruct
from dipy.align.imaffine import AffineMap
affine = vals['pre_affine']
vals['pre_affine'] = AffineMap(None)
vals['pre_affine'].__dict__ = affine
if vals['sdr_morph'] is not None:
from dipy.align.imwarp import DiffeomorphicMap
morph = vals['sdr_morph']
vals['sdr_morph'] = DiffeomorphicMap(None, [])
vals['sdr_morph'].__dict__ = morph
return SourceMorph(**vals)
###############################################################################
# Helper functions for SourceMorph methods
def _check_dep(nibabel='2.1.0', dipy='0.10.1'):
"""Check dependencies."""
for lib, ver in zip(['nibabel', 'dipy'],
[nibabel, dipy]):
passed = True if not ver else check_version(lib, ver)
if not passed:
raise ImportError('%s %s or higher must be correctly '
'installed and accessible from Python' % (lib,
ver))
def _morphed_stc_as_volume(morph, stc, mri_resolution=False, mri_space=True,
output='nifti1'):
"""Return volume source space as Nifti1Image and/or save to disk."""
if isinstance(stc, VolVectorSourceEstimate):
stc = stc.magnitude()
if not isinstance(stc, VolSourceEstimate):
raise ValueError('Only volume source estimates can be converted to '
'volumes')
_check_dep(nibabel='2.1.0', dipy=False)
_check_option('output', output, ['nifti', 'nifti1', 'nifti2'])
if output in ('nifti', 'nifti1'):
from nibabel import (Nifti1Image as NiftiImage,
Nifti1Header as NiftiHeader)
else:
assert output == 'nifti2'
from nibabel import (Nifti2Image as NiftiImage,
Nifti2Header as NiftiHeader)
new_zooms = None
# if full MRI resolution, compute zooms from shape and MRI zooms
if isinstance(mri_resolution, bool) and mri_resolution:
new_zooms = _get_zooms_orig(morph)
# if MRI resolution is set manually as a single value, convert to tuple
if isinstance(mri_resolution, (int, float)) and not isinstance(
mri_resolution, bool):
# use iso voxel size
new_zooms = (float(mri_resolution),) * 3
# if MRI resolution is set manually as a tuple, use it
if isinstance(mri_resolution, tuple):
new_zooms = mri_resolution
# create header
hdr = NiftiHeader()
hdr.set_xyzt_units('mm', 'msec')
hdr['pixdim'][4] = 1e3 * stc.tstep
# setup empty volume
img = np.zeros(morph.shape + (stc.shape[1],)).reshape(-1, stc.shape[1])
img[stc.vertices, :] = stc.data
img = img.reshape(morph.shape + (-1,))
# make nifti from data
with warnings.catch_warnings(): # nibabel<->numpy warning
img = NiftiImage(img, morph.affine, header=hdr)
# reslice in case of manually defined voxel size
zooms = morph.zooms[:3]
if new_zooms is not None:
from dipy.align.reslice import reslice
new_zooms = new_zooms[:3]
img, affine = reslice(img.get_data(),
img.affine, # MRI to world registration
zooms, # old voxel size in mm
new_zooms) # new voxel size in mm
with warnings.catch_warnings(): # nibabel<->numpy warning
img = NiftiImage(img, affine)
zooms = new_zooms
# set zooms in header
img.header.set_zooms(tuple(zooms) + (1,))
return img
def _get_src_data(src):
"""Obtain src data relevant for as _volume."""
src_data = dict()
# copy data to avoid conflicts
if isinstance(src, SourceEstimate):
src_t = [dict(vertno=src.vertices[0]), dict(vertno=src.vertices[1])]
src_kind = 'surface'
elif isinstance(src, SourceSpaces):
src_t = src.copy()
src_kind = src.kind
else:
raise TypeError('src must be an instance of SourceSpaces or '
'SourceEstimate, got %s (%s)' % (type(src), src))
del src
# extract all relevant data for volume operations
if src_kind == 'volume':
shape = src_t[0]['shape']
src_data.update({'src_shape': (shape[2], shape[1], shape[0]),
'src_affine_vox': src_t[0]['vox_mri_t']['trans'],
'src_affine_src': src_t[0]['src_mri_t']['trans'],
'src_affine_ras': src_t[0]['mri_ras_t']['trans'],
'src_shape_full': (
src_t[0]['mri_height'], src_t[0]['mri_depth'],
src_t[0]['mri_width']),
'interpolator': src_t[0]['interpolator'],
'inuse': src_t[0]['inuse']})
else:
assert src_kind == 'surface'
src_data = dict(vertices_from=[s['vertno'].copy() for s in src_t])
# delete copy
return src_data, src_kind
def _interpolate_data(stc, morph, mri_resolution=True, mri_space=True,
output='nifti1'):
"""Interpolate source estimate data to MRI."""
_check_dep(nibabel='2.1.0', dipy=False)
if output not in ('nifti', 'nifti1', 'nifti2'):
raise ValueError("invalid output specifier %s. Must be 'nifti1' or"
" 'nifti2'" % output)
if output in ('nifti', 'nifti1'):
from nibabel import (Nifti1Image as NiftiImage,
Nifti1Header as NiftiHeader)
else:
assert output == 'nifti2'
from nibabel import (Nifti2Image as NiftiImage,
Nifti2Header as NiftiHeader)
assert morph.kind == 'volume'
voxel_size_defined = False
if isinstance(mri_resolution, (int, float)) and not isinstance(
mri_resolution, bool):
# use iso voxel size
mri_resolution = (float(mri_resolution),) * 3
if isinstance(mri_resolution, tuple):
_check_dep(nibabel=False, dipy='0.10.1') # nibabel was already checked
from dipy.align.reslice import reslice
voxel_size = mri_resolution
voxel_size_defined = True
mri_resolution = True
# if data wasn't morphed yet - necessary for call of
# stc_unmorphed.as_volume. Since only the shape of src is known, it cannot
# be resliced to a given voxel size without knowing the original.
if isinstance(morph, SourceSpaces):
assert morph.kind == 'volume'
if voxel_size_defined:
raise ValueError(
"Cannot infer original voxel size for reslicing... "
"set mri_resolution to boolean value or apply morph first.")
# Now deal with the fact that we may have multiple sub-volumes
inuse = [morph[k]['inuse'] for k in range(len(morph))]
src_shape = [morph[k]['shape'] for k in range(len(morph))]
assert len(set(map(tuple, src_shape))) == 1
morph = BunchConst(src_data=_get_src_data(morph)[0])
else:
# Make a list as we may have many inuse when using multiple sub-volumes
inuse = [morph.src_data['inuse']]
shape3d = morph.src_data['src_shape']
# setup volume parameters
n_times = stc.data.shape[1]
shape = (n_times,) + shape3d
vols = np.zeros(shape)
n_vertices_seen = 0
for this_inuse in inuse:
mask3d = this_inuse.reshape(shape3d).astype(np.bool)
n_vertices = np.sum(mask3d)
stc_slice = slice(n_vertices_seen, n_vertices_seen + n_vertices)
for k, vol in enumerate(vols): # loop over time instants
vol[mask3d] = stc.data[stc_slice, k]
n_vertices_seen += n_vertices
# use mri resolution as represented in src
if mri_resolution:
mri_shape3d = morph.src_data['src_shape_full']
mri_shape = (n_times,) + mri_shape3d
mri_vol = np.zeros(mri_shape)
interpolator = morph.src_data['interpolator']
for k, vol in enumerate(vols):
mri_vol[k] = (interpolator * vol.ravel()).reshape(mri_shape3d)
vols = mri_vol
vols = vols.T
# set correct space
affine = morph.src_data['src_affine_vox']
if not mri_resolution:
affine = morph.src_data['src_affine_src']
if mri_space:
affine = np.dot(morph.src_data['src_affine_ras'], affine)
affine[:3] *= 1e3
# pre-define header
header = NiftiHeader()
header.set_xyzt_units('mm', 'msec')
header['pixdim'][4] = 1e3 * stc.tstep
with warnings.catch_warnings(): # nibabel<->numpy warning
img = NiftiImage(vols, affine, header=header)
# if a specific voxel size was targeted (only possible after morphing)
if voxel_size_defined:
# reslice mri
img, img_affine = reslice(
img.get_data(), img.affine, _get_zooms_orig(morph), voxel_size)
with warnings.catch_warnings(): # nibabel<->numpy warning
img = NiftiImage(img, img_affine, header=header)
return img
###############################################################################
# Morph for VolSourceEstimate
def _compute_morph_sdr(mri_from, mri_to, niter_affine=(100, 100, 10),
niter_sdr=(5, 5, 3), zooms=(5., 5., 5.)):
"""Get a matrix that morphs data from one subject to another."""
_check_dep(nibabel='2.1.0', dipy='0.10.1')
import nibabel as nib
with np.testing.suppress_warnings():
from dipy.align import imaffine, imwarp, metrics, transforms
from dipy.align.reslice import reslice
logger.info('Computing nonlinear Symmetric Diffeomorphic Registration...')
# use voxel size of mri_from
if zooms is None:
zooms = mri_from.header.get_zooms()[:3]
zooms = np.atleast_1d(zooms).astype(float)
if zooms.shape == (1,):
zooms = np.repeat(zooms, 3)
if zooms.shape != (3,):
raise ValueError('zooms must be None, a singleton, or have shape (3,),'
' got shape %s' % (zooms.shape,))
# reslice mri_from
mri_from_res, mri_from_res_affine = reslice(
mri_from.get_data(), mri_from.affine, mri_from.header.get_zooms()[:3],
zooms)
with warnings.catch_warnings(): # nibabel<->numpy warning
mri_from = nib.Nifti1Image(mri_from_res, mri_from_res_affine)
# reslice mri_to
mri_to_res, mri_to_res_affine = reslice(
mri_to.get_data(), mri_to.affine, mri_to.header.get_zooms()[:3],
zooms)
with warnings.catch_warnings(): # nibabel<->numpy warning
mri_to = nib.Nifti1Image(mri_to_res, mri_to_res_affine)
affine = mri_to.affine
mri_to = np.array(mri_to.dataobj, float) # to ndarray
mri_to /= mri_to.max()
mri_from_affine = mri_from.affine # get mri_from to world transform
mri_from = np.array(mri_from.dataobj, float) # to ndarray
mri_from /= mri_from.max() # normalize
# compute center of mass
c_of_mass = imaffine.transform_centers_of_mass(
mri_to, affine, mri_from, affine)
# set up Affine Registration
affreg = imaffine.AffineRegistration(
metric=imaffine.MutualInformationMetric(nbins=32),
level_iters=list(niter_affine),
sigmas=[3.0, 1.0, 0.0],
factors=[4, 2, 1])
# translation
translation = affreg.optimize(
mri_to, mri_from, transforms.TranslationTransform3D(), None, affine,
mri_from_affine, starting_affine=c_of_mass.affine)
# rigid body transform (translation + rotation)
rigid = affreg.optimize(
mri_to, mri_from, transforms.RigidTransform3D(), None,
affine, mri_from_affine, starting_affine=translation.affine)
# affine transform (translation + rotation + scaling)
pre_affine = affreg.optimize(
mri_to, mri_from, transforms.AffineTransform3D(), None,
affine, mri_from_affine, starting_affine=rigid.affine)
# compute mapping
sdr = imwarp.SymmetricDiffeomorphicRegistration(
metrics.CCMetric(3), list(niter_sdr))
sdr_morph = sdr.optimize(mri_to, pre_affine.transform(mri_from))
shape = tuple(sdr_morph.domain_shape) # should be tuple of int
logger.info('done.')
return shape, zooms, affine, pre_affine, sdr_morph
###############################################################################
# Morph for SourceEstimate | VectorSourceEstimate
@deprecated("This function is deprecated and will be removed in version 0.19. "
"Use morph_mat = mne.compute_source_morph(...).morph_mat")
def compute_morph_matrix(subject_from, subject_to, vertices_from, vertices_to,
smooth=None, subjects_dir=None, warn=True,
xhemi=False, verbose=None):
"""Get a matrix that morphs data from one subject to another.
Parameters
----------
subject_from : str
Name of the original subject as named in the SUBJECTS_DIR.
subject_to : str
Name of the subject on which to morph as named in the SUBJECTS_DIR.
vertices_from : list of array of int
Vertices for each hemisphere (LH, RH) for subject_from.
vertices_to : list of arrays of int
Vertices for each hemisphere (LH, RH) for subject_to.
smooth : int or None
Number of iterations for the smoothing of the surface data.
If None, smooth is automatically defined to fill the surface
with non-zero values. The default is smooth=None.
subjects_dir : str
Path to SUBJECTS_DIR is not set in the environment. The default is
subjects_dir=None.
warn : bool
If True, warn if not all vertices were used. warn
xhemi : bool
Morph across hemisphere. Currently only implemented for
``subject_to == subject_from``. See notes below. The default is
xhemi=False.
%(verbose)s The default
is verbose=None.
Returns
-------
morph_matrix : sparse matrix
matrix that morphs data from ``subject_from`` to ``subject_to``.
Notes
-----
This function can be used to morph data between hemispheres by setting
``xhemi=True``. The full cross-hemisphere morph matrix maps left to right
and right to left. A matrix for cross-mapping only one hemisphere can be
constructed by specifying the appropriate vertices, for example, to map the
right hemisphere to the left:
``vertices_from=[[], vert_rh], vertices_to=[vert_lh, []]``.
Cross-hemisphere mapping requires appropriate ``sphere.left_right``
morph-maps in the subject's directory. These morph maps are included
with the ``fsaverage_sym`` FreeSurfer subject, and can be created for other
subjects with the ``mris_left_right_register`` FreeSurfer command. The
``fsaverage_sym`` subject is included with FreeSurfer > 5.1 and can be
obtained as described `here
<http://surfer.nmr.mgh.harvard.edu/fswiki/Xhemi>`_. For statistical
comparisons between hemispheres, use of the symmetric ``fsaverage_sym``
model is recommended to minimize bias [1]_.
References
----------
.. [1] Greve D. N., Van der Haegen L., Cai Q., Stufflebeam S., Sabuncu M.
R., Fischl B., Brysbaert M.
A Surface-based Analysis of Language Lateralization and Cortical
Asymmetry. Journal of Cognitive Neuroscience 25(9), 1477-1492, 2013.
"""
return _compute_morph_matrix(subject_from, subject_to, vertices_from,
vertices_to, smooth, subjects_dir, warn,
xhemi)
def _compute_morph_matrix(subject_from, subject_to, vertices_from, vertices_to,
smooth=None, subjects_dir=None, warn=True,
xhemi=False):
"""Compute morph matrix."""
logger.info('Computing morph matrix...')
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
tris = _get_subject_sphere_tris(subject_from, subjects_dir)
maps = read_morph_map(subject_from, subject_to, subjects_dir, xhemi)
# morph the data
morpher = []
for hemi_to in range(2): # iterate over to / block-rows of CSR matrix
hemi_from = (1 - hemi_to) if xhemi else hemi_to
idx_use = vertices_from[hemi_from]
if len(idx_use) == 0:
morpher.append(
sparse.csr_matrix((len(vertices_to[hemi_to]), 0)))
continue
e = mesh_edges(tris[hemi_from])
e.data[e.data == 2] = 1
n_vertices = e.shape[0]
e = e + sparse.eye(n_vertices, n_vertices)
m = sparse.eye(len(idx_use), len(idx_use), format='csr')
mm = _morph_buffer(m, idx_use, e, smooth, n_vertices,
vertices_to[hemi_to], maps[hemi_from], warn=warn)
assert mm.shape == (len(vertices_to[hemi_to]),
len(vertices_from[hemi_from]))
morpher.append(mm)
shape = (sum(len(v) for v in vertices_to),
sum(len(v) for v in vertices_from))
data = [m.data for m in morpher]
indices = [m.indices.copy() for m in morpher]
indptr = [m.indptr.copy() for m in morpher]
# column indices need to be adjusted
indices[0 if xhemi else 1] += len(vertices_from[0])
indices = np.concatenate(indices)
# row index pointers need to be adjusted
indptr[1] = indptr[1][1:] + len(data[0])
indptr = np.concatenate(indptr)
# data does not need to be adjusted
data = np.concatenate(data)
# this is equivalent to morpher = sparse_block_diag(morpher).tocsr(),
# but works for xhemi mode
morpher = sparse.csr_matrix((data, indices, indptr), shape=shape)
logger.info('[done]')
return morpher
@verbose
def grade_to_vertices(subject, grade, subjects_dir=None, n_jobs=1,
verbose=None):
"""Convert a grade to source space vertices for a given subject.
Parameters
----------
subject : str
Name of the subject
grade : int | list
Resolution of the icosahedral mesh (typically 5). If None, all
vertices will be used (potentially filling the surface). If a list,
then values will be morphed to the set of vertices specified in
in grade[0] and grade[1]. Note that specifying the vertices (e.g.,
grade=[np.arange(10242), np.arange(10242)] for fsaverage on a
standard grade 5 source space) can be substantially faster than
computing vertex locations. Note that if subject='fsaverage'
and 'grade=5', this set of vertices will automatically be used
(instead of computed) for speed, since this is a common morph.
subjects_dir : str | None
Path to SUBJECTS_DIR if it is not set in the environment
n_jobs : int
Number of jobs to run in parallel. The default is n_jobs=1.
%(verbose)s
Returns
-------
vertices : list of array of int
Vertex numbers for LH and RH
"""
# add special case for fsaverage for speed
if subject == 'fsaverage' and isinstance(grade, int) and grade == 5:
return [np.arange(10242), np.arange(10242)]
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
spheres_to = [op.join(subjects_dir, subject, 'surf',
xh + '.sphere.reg') for xh in ['lh', 'rh']]
lhs, rhs = [read_surface(s)[0] for s in spheres_to]
if grade is not None: # fill a subset of vertices
if isinstance(grade, list):
if not len(grade) == 2:
raise ValueError('grade as a list must have two elements '
'(arrays of output vertices)')
vertices = grade
else:
# find which vertices to use in "to mesh"
ico = _get_ico_tris(grade, return_surf=True)
lhs /= np.sqrt(np.sum(lhs ** 2, axis=1))[:, None]
rhs /= np.sqrt(np.sum(rhs ** 2, axis=1))[:, None]
# Compute nearest vertices in high dim mesh
parallel, my_compute_nearest, _ = \
parallel_func(_compute_nearest, n_jobs)
lhs, rhs, rr = [a.astype(np.float32)
for a in [lhs, rhs, ico['rr']]]
vertices = parallel(my_compute_nearest(xhs, rr)
for xhs in [lhs, rhs])
# Make sure the vertices are ordered
vertices = [np.sort(verts) for verts in vertices]
for verts in vertices:
if (np.diff(verts) == 0).any():
raise ValueError(
'Cannot use icosahedral grade %s with subject %s, '
'mapping %s vertices onto the high-resolution mesh '
'yields repeated vertices, use a lower grade or a '
'list of vertices from an existing source space'
% (grade, subject, len(verts)))
else: # potentially fill the surface
vertices = [np.arange(lhs.shape[0]), np.arange(rhs.shape[0])]
return vertices
def _morph_buffer(data, idx_use, e, smooth, n_vertices, nearest, maps,
warn=True):
"""Morph data from one subject's source space to another.
Parameters
----------
data : array, or csr sparse matrix
A n_vertices [x 3] x n_times (or other dimension) dataset to morph.
idx_use : array of int
Vertices from the original subject's data.
e : sparse matrix
The mesh edges of the "from" subject.
smooth : int
Number of smoothing iterations to perform. A hard limit of 100 is
also imposed.
n_vertices : int
Number of vertices.
nearest : array of int
Vertices on the reference surface to use.
maps : sparse matrix
Morph map from one subject to the other.
warn : bool
If True, warn if not all vertices were used.
%(verbose)s The default
is verbose=None.
Returns
-------
data_morphed : array, or csr sparse matrix
The morphed data (same type as input).
"""
# When operating on vector data, morph each dimension separately
if data.ndim == 3:
data_morphed = np.zeros((len(nearest), 3, data.shape[2]),
dtype=data.dtype)
for dim in range(3):
data_morphed[:, dim, :] = _morph_buffer(
data=data[:, dim, :], idx_use=idx_use, e=e, smooth=smooth,