-
Notifications
You must be signed in to change notification settings - Fork 23
/
generate.py
239 lines (209 loc) · 7.16 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import json
import logging
import os
from datetime import datetime
import typer
from diffusers.schedulers import (
DDIMScheduler,
DDPMScheduler,
DEISMultistepScheduler,
DPMSolverSinglestepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
KDPM2AncestralDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
RePaintScheduler,
UniPCMultistepScheduler,
)
from diffusers.utils.logging import disable_progress_bar
from tqdm import tqdm
from comet import start_experiment
from flows import BYOPFlow
from flows.flow_byop import BYOPFlow
from utils import save_gif, save_parameters, save_video
logger = logging.getLogger(__name__)
# Disable denoising progress bar
disable_progress_bar()
OUTPUT_BASE_PATH = os.getenv("OUTPUT_BASE_PATH", "./generated")
def load_scheduler(scheduler, **kwargs):
scheduler_map = dict(
pndms=PNDMScheduler(**kwargs),
ddim=DDIMScheduler(**kwargs),
ddpm=DDPMScheduler(**kwargs),
klms=LMSDiscreteScheduler(**kwargs),
dpm=DPMSolverSinglestepScheduler(**kwargs),
dpm_ads=KDPM2AncestralDiscreteScheduler(**kwargs),
deis=DEISMultistepScheduler(**kwargs),
euler=EulerDiscreteScheduler(**kwargs),
euler_ads=EulerAncestralDiscreteScheduler(**kwargs),
repaint=RePaintScheduler(**kwargs),
unipc=UniPCMultistepScheduler(**kwargs),
)
return scheduler_map.get(scheduler)
def run(
pipe,
text_prompt_inputs,
negative_prompt_inputs,
height=512,
width=512,
num_inference_steps=50,
guidance_scale=7.5,
strength=0.5,
batch_size=1,
seed=42,
fps=24,
use_default_scheduler=False,
scheduler="pndms",
scheduler_kwargs="{}",
use_fixed_latent=False,
use_prompt_embeds=True,
num_latent_channels=4,
audio_input=None,
audio_component="both",
mel_spectogram_reduce="max",
image_input=None,
video_input=None,
video_use_pil_format=False,
output_format="mp4",
model_name="runwayml/stable-diffusion-v1-5",
controlnet_name=None,
additional_pipeline_arguments="{}",
interpolation_type="linear",
interpolation_args="",
zoom="",
translate_x="",
translate_y="",
angle="",
padding_mode="border",
coherence_scale=300,
coherence_alpha=1.0,
coherence_steps=3,
use_color_matching=False,
preprocess=None,
):
if pipe is None:
raise ValueError(
"Pipline object has not been created. Please load a Pipline before submitting a run"
)
experiment = start_experiment()
run_name = datetime.today().strftime("%Y-%m-%d-%H:%M:%S")
run_path = os.path.join(OUTPUT_BASE_PATH, run_name)
run_image_save_path = os.path.join(run_path, "imgs")
os.makedirs(run_image_save_path, exist_ok=True)
device = pipe.device
parameters = {
"text_prompt_inputs": text_prompt_inputs,
"negative_prompt_inputs": negative_prompt_inputs,
"num_inference_steps": num_inference_steps,
"guidance_scale": guidance_scale,
"batch_size": batch_size,
"scheduler": scheduler,
"use_default_scheduler": use_default_scheduler,
"num_latent_channels": num_latent_channels,
"seed": seed,
"fps": fps,
"use_fixed_latent": use_fixed_latent,
"use_prompt_embeds": use_prompt_embeds,
"audio_component": audio_component,
"mel_spectogram_reduce": mel_spectogram_reduce,
"output_format": output_format,
"pipeline_name": pipe.__class__.__name__,
"model_name": model_name,
"controlnet_name": controlnet_name,
"scheduler_kwargs": scheduler_kwargs,
"additional_pipeline_arguments": additional_pipeline_arguments,
"interpolation_type": interpolation_type,
"interpolation_args": interpolation_args,
"zoom": zoom,
"translate_x": translate_x,
"translate_y": translate_y,
"angle": angle,
"padding_mode": padding_mode,
"coherence_scale": coherence_scale,
"coherence_alpha": coherence_alpha,
"coherence_steps": coherence_steps,
"use_color_matching": use_color_matching,
"preprocess": preprocess,
}
save_parameters(run_path, parameters)
if (video_input is not None) or (image_input is not None):
parameters.update({"strength": strength})
if experiment:
experiment.log_parameters(parameters)
if not use_default_scheduler:
scheduler_kwargs = json.loads(scheduler_kwargs)
if not scheduler_kwargs:
scheduler_kwargs = {
"beta_start": 0.00085,
"beta_end": 0.012,
"beta_schedule": "scaled_linear",
}
pipe.scheduler = load_scheduler(scheduler, **scheduler_kwargs)
motion_args = {
"zoom": zoom,
"translate_x": translate_x,
"translate_y": translate_y,
"angle": angle,
}
additional_pipeline_arguments = json.loads(additional_pipeline_arguments)
flow = BYOPFlow(
pipe=pipe,
text_prompts=text_prompt_inputs,
negative_prompts=negative_prompt_inputs,
guidance_scale=guidance_scale,
strength=strength,
num_inference_steps=num_inference_steps,
height=height,
width=width,
use_fixed_latent=use_fixed_latent,
use_prompt_embeds=use_prompt_embeds,
num_latent_channels=num_latent_channels,
device=device,
image_input=image_input,
audio_input=audio_input,
audio_component=audio_component,
audio_mel_spectogram_reduce=mel_spectogram_reduce,
video_input=video_input,
video_use_pil_format=video_use_pil_format,
seed=seed,
batch_size=batch_size,
fps=fps,
additional_pipeline_arguments=additional_pipeline_arguments,
interpolation_type=interpolation_type,
interpolation_args=interpolation_args,
motion_args=motion_args,
padding_mode=padding_mode,
coherence_scale=coherence_scale,
coherence_alpha=coherence_alpha,
coherence_steps=coherence_steps,
use_color_matching=use_color_matching,
preprocess=preprocess,
)
max_frames = flow.max_frames
output_frames = []
image_generator = flow.create()
for output, frame_ids in tqdm(image_generator, total=max_frames // flow.batch_size):
images = output.images
for image, frame_idx in zip(images, frame_ids):
img_save_path = f"{run_image_save_path}/{frame_idx:04d}.png"
image.save(img_save_path)
output_frames.append(img_save_path)
if experiment:
experiment.log_image(img_save_path, image_name="frame", step=frame_idx)
if output_format == "gif":
output_filename = f"{run_path}/output.gif"
save_gif(frames=output_frames, filename=output_filename, fps=fps)
else:
output_filename = f"{run_path}/output.mp4"
save_video(
frames=output_frames,
filename=output_filename,
fps=fps,
audio_input=audio_input,
)
if experiment:
experiment.log_asset(output_filename)
return output_filename
if __name__ == "__main__":
typer.run(run)