- 已完成模型列表
- FM
- FFM
- Embedding+MLP
- wide & Deep
- DeepFM
- PNN
- FNN
- 参考论文列表
- [GBDT+LR] Practical Lessons from Predicting Clicks on Ads at Facebook
- [FM] S. Rendle, Factorization machines
- [FM Model] Fast Context-aware Recommendations with Factorization Machines
- [FFM] Yuchin Juan,Yong Zhuang,Wei-Sheng Chin,Field-aware Factorization Machines for CTR Prediction
- [Wide&Deep] Cheng H T, Koc L, Harmsen J, et al. Wide & deep learning for recommender systems
- [FNN] Weinan Zhang, Tianming Du, and Jun Wang. Deep learning over multi-field categorical data - - A case study on user response
- [PNN] Qu Y, Cai H, Ren K, et al. Product-based neural networks for user response prediction
- [DeepFM] Huifeng Guo et all. DeepFM: A Factorization-Machine based Neural Network for CTR Prediction
- [AFM] Attentional Factorization Machines - Learning the Weight of Feature Interactions via Attention Networks
- [NFM] Neural Factorization Machines for Sparse Predictive Analytics
- [DIN] Deep Interest Network for Click-Through Rate Prediction.
- [DIEN] Deep Interest Evolution Network for Click-Through Rate Prediction
- [DCN] Deep & Cross Network for Ad Click Predictions
- [xDeepFM] xDeepFM- Combining Explicit and Implicit Feature Interactions for Recommender Systems
- 总结博客
- CTR学习笔记&代码实现1-深度学习的前奏LR->FFM https://www.cnblogs.com/gogoSandy/p/12501846.html
- CTR学习笔记&代码实现2-深度ctr模型 MLP->Wide&Deep https://www.cnblogs.com/gogoSandy/p/12658051.html
- CTR学习笔记&代码实现3-深度ctr模型 FNN->PNN->DeepFM https://www.cnblogs.com/gogoSandy/p/12742417.html