-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathsmpl_util.py
59 lines (51 loc) · 1.57 KB
/
smpl_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from .geometry import *
def calc_smpl_normal(smpl):
vi = smpl['vi']
vn = np.zeros((vi.shape[0], 3))
for f in smpl['f']:
a, b, c = vi[f[0, 0]], vi[f[1, 0]], vi[f[2, 0]]
n = cross_3d(c-a, b-a)
vn[f[0, 0]] += n
vn[f[1, 0]] += n
vn[f[2, 0]] += n
vn = vn / np.sqrt(np.sum(vn**2, axis=1)).reshape((-1, 1))
return vn
def smpl_normalize(smpl, norm_faces, flip_normal=False, init_rot=None):
b_min = np.zeros(3)
b_max = np.zeros(3)
scale = 1.0
center = np.zeros(3)
vi = smpl['vi'].copy()[:, :3]
b0 = np.min(vi, axis=0)
b1 = np.max(vi, axis=0)
center = (b0 + b1) / 2
scale = np.min(1.0 / (b1 - b0)) * 0.9
b_min = center - 0.5 / scale
b_max = center + 0.5 / scale
normal = np.zeros((3))
for f in norm_faces:
a, b, c = vi[f[0]][0], vi[f[1]][0], vi[f[2]][0]
normal += cross_3d(c - a, b - a)
if flip_normal:
normal = -normal
x, z = normal[0], normal[2]
theta = math.acos(z / math.sqrt(z*z +x*x))
if x < 0:
theta = 2*math.acos(-1) - theta
rot = rotationY(-theta)
vi -= center
vi *= scale
if init_rot is not None:
x, y, z = init_rot
rot = np.array(rotationX(x / 180 * math.acos(-1))) @ rot
rot = np.array(rotationY(y / 180 * math.acos(-1))) @ rot
rot = np.array(rotationZ(z / 180 * math.acos(-1))) @ rot
vi = (rot @ vi.T).T
return {
'b_min' : b_min,
'b_max' : b_max,
'scale' : scale,
'center' : center,
'direction' : normal,
'smpl' : vi
}