-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlocalizedpartialevaluation.py
242 lines (206 loc) · 10.5 KB
/
localizedpartialevaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
from pgmpy.inference.base import Inference
from interval import interval
from expansion import *
class LocalizedPartialEvaluation(Inference):
def __init__(self, model, expansion_method, expansion_rate):
self.model = model
self.method = expansion_method
self.rate = expansion_rate
#The function that starts LPE
def query(self, node, precision, evidence=None, show_progress=False):
if show_progress:
print("Performing LPE")
print("Query:", node)
print("Evidence:", evidence)
print("Precision:", precision)
print("")
#Prune network and finalize initialization of expansion method
self.model = self._prune_bayesian_model([node], evidence)[0]
self.method.set_params(model=self.model, query=node, evidence=evidence)
self.method.initialize()
total_nodes = len(self.model.nodes)
#Initialize active set
for n in self.model.nodes:
self.model.nodes[n]['active'] = False
self.model.nodes[node]['active'] = True
set_size = 1
if isinstance(self.rate, AdaptiveRate):
self.rate.set_params(set_size, precision)
result = [interval[0, 1]] * self.model.get_cardinality(node)
self.rate.add_result(result)
set_size += self.method.expand(self.rate.get_rate(model))
#Propagate to find interval. Expand active set. Repeat until precision is met.
intsize = float('inf')
iteration = 0
while True:
result = self.propagate(node, evidence)
if isinstance(self.rate, AdaptiveRate):
self.rate.add_result(result)
if show_progress:
print("Iteration", str(iteration) + ".", "Considering", set_size, "/", total_nodes, "nodes.")
for i, state in enumerate(self.model.states[node]):
print(state + ":", result[i])
print("")
intsize = 0
for interval_ in result:
s = interval_[0].sup - interval_[0].inf
if s > intsize:
intsize = s
if intsize <= precision:
return result
set_size += self.method.expand(self.rate.get_rate(model))
iteration += 1
#Belief propagation using intervals and an active set
def propagate(self, query, evidence=None, normalize=True):
#Calculates the lambda values of node
def la(node):
if evidence != None and node in evidence:
child_messages = [list(send_la_message(child, node).values()) for child in self.model.get_children(node)]
la = [interval(0)] * self.model.get_cardinality(node)
la = makeDict(self.model.states[node], la)
la[evidence[node]] = interval(1)
if len(child_messages) == 0:
return la
else:
child_messages.append(list(la.values()))
la = prod(child_messages)
return makeDict(self.model.states[node], normalized(la))
child_messages = [list(send_la_message(child, node).values()) for child in self.model.get_children(node)]
if len(child_messages) == 0:
la = [interval(1)] * self.model.get_cardinality(node)
else:
la = prod(child_messages)
return makeDict(self.model.states[node], normalized(la))#normalized(la))
#Calculates the pi value of node
def pi(node):
if evidence != None and node in evidence:
pi = np.zeros(shape=self.model.get_cardinality(node))
pi = makeDict(self.model.states[node], pi)
pi[evidence[node]] = interval(1)
return pi
pi_messages = [send_pi_message(parent, node) for parent in self.model.get_parents(node)]
pi_messages = makeDict(self.model.get_parents(node), pi_messages)
cpt = self.model.get_cpds(node)
values = cpt.get_values().flatten()
assignments = cpt.assignment(range(len(values)))
results = makeDict(self.model.states[node], [[] for i in range(len(self.model.states[node]))])
for index, value in enumerate(values):
assignment = dict(assignments[index])
message_product = interval(1)
for parent in self.model.get_parents(node):
message_product *= pi_messages[parent][assignment[parent]]
results[assignment[node]].append((interval(value), interval(message_product)))
pi = makeDict(self.model.states[node], [None] * len(self.model.states[node]))
for state, pairs in results.items():
pi[state] = annihilationReinforcement(pairs)
return pi
#node1 (child) sends a lambda message to node2 (parent)
def send_la_message(node1, node2):
if not self.model.nodes[node1]['active']:
la_message = [interval[0, 1]] * self.model.get_cardinality(node1)
return makeDict(self.model.states[node1], la_message)
other_parents = self.model.get_parents(node1)
other_parents.remove(node2)
pi_messages = [send_pi_message(parent, node1) for parent in other_parents]
pi_messages = makeDict(other_parents, pi_messages)
l = la(node1)
cpt = self.model.get_cpds(node1)
values = cpt.get_values().flatten()
assignments = cpt.assignment(range(len(values)))
s1 = self.model.states[node1]
s2 = self.model.states[node2]
results = makeDict(s2, [makeDict(s1, [[] for i in s1]) for i in s2])
for index, value in enumerate(values):
assignment = dict(assignments[index])
message_product = interval(1)
for parent in other_parents:
message_product *= pi_messages[parent][assignment[parent]]
results[assignment[node2]][assignment[node1]].append((interval(value), interval(message_product)))
la_message = makeDict(self.model.states[node2], [None] * len(self.model.states[node2]))
for state2, value in results.items():
new_pairs = []
for state1, pairs in value.items():
new_pairs.append((annihilationReinforcement(pairs), l[state1]))
la_message[state2] = annihilationReinforcement(new_pairs)
return la_message
#node1 (parent) sends a pi message to node2 (child)
def send_pi_message(node1, node2):
if not self.model.nodes[node1]['active']:
pi_message = [interval[0, 1]] * self.model.get_cardinality(node1)
return makeDict(self.model.states[node1], pi_message)
if evidence != None and node1 in evidence:
return pi(node1)
other_children = self.model.get_children(node1)
other_children.remove(node2)
la_messages = [list(send_la_message(child, node1).values()) for child in other_children]
la_messages.append(list(pi(node1).values()))
pi_message = prod(la_messages)
return makeDict(self.model.states[node1], normalized(pi_message))#normalized(pi_message))
#---HELPER FUNCTIONS---
#takes a list of keys and a list of values and builds a dictionary
def makeDict(states, values):
if len(states) != len(values):
raise Exception("ERROR", states, values)
return dict(map(lambda i,j : (i,j) , states,values))
#Multiplies all the values in each column together
def prod(matrix):
if len(matrix) == 0:
return []
result = [1] * len(matrix[0])
for i in range(len(matrix[0])):
for j in range(len(matrix)):
result[i] = matrix[j][i] * result[i]
return result
#Normalizes a vector of intervals
def normalized(message):
copy = message.copy()
removed = []
total_l = 0
total_u = 0
result = []
for i, inter in reversed(list(enumerate(message))):
total_l += inter[0].inf
total_u += inter[0].sup
if inter[0].inf == 0 and inter[0].sup == 0:
del copy[i]
removed.append(i)
for i in copy:
u = i[0].sup / (i[0].sup - i[0].inf + total_l)
if i[0].inf - i[0].sup + total_u == 0:
l = u
else:
l = i[0].inf / (i[0].inf - i[0].sup + total_u)
result.append(interval[l, u])
for i in reversed(removed):
result.insert(i, interval[0])
return result
#Applies the A/R algorithm to vectors a and b zipped together in the list pairs
#Pairs is a list of (probability, message)
def annihilationReinforcement(pairs):
lowerbound_sum = sum([pair[1][0].inf for pair in pairs])
upperbound_sum = sum([pair[1][0].sup for pair in pairs])
#calculate lowerbound
pairs.sort(key = lambda x: x[0][0].inf)
l = 0
mass = lowerbound_sum
for pair in pairs:
increase = pair[1][0].sup - pair[1][0].inf
if increase + mass > 1:
increase = 1 - mass
mass += increase
l += pair[0][0].inf * (pair[1][0].inf + increase)
#calculate upperbound
pairs.sort(key = lambda x: x[0][0].sup)
u = 0
mass = upperbound_sum
for pair in pairs:
decrease = pair[1][0].sup - pair[1][0].inf
if mass - decrease < 1:
decrease = mass - 1
mass -= decrease
u += pair[0][0].sup * (pair[1][0].sup - decrease)
return interval[l, u]
#Start the propagation process and return BEL(x)
l = list(la(query).values())
p = list(pi(query).values())
return normalized(prod([l, p]))