forked from fatchord/WaveRNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gen_wavernn.py
115 lines (81 loc) · 4.2 KB
/
gen_wavernn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
from utils.dataset import get_vocoder_datasets
from utils.dsp import *
from models.fatchord_wavernn import Model
from utils.paths import Paths
from utils.display import simple_table
import torch
import argparse
def gen_testset(model, test_set, samples, batched, target, overlap, save_path) :
k = model.get_step() // 1000
for i, (m, x) in enumerate(test_set, 1):
if i > samples : break
print('\n| Generating: %i/%i' % (i, samples))
x = x[0].numpy()
bits = 16 if hp.voc_mode == 'MOL' else hp.bits
if hp.mu_law and hp.voc_mode != 'MOL' :
x = decode_mu_law(x, 2**bits, from_labels=True)
else :
x = label_2_float(x, bits)
save_wav(x, f'{save_path}{k}k_steps_{i}_target.wav')
batch_str = f'gen_batched_target{target}_overlap{overlap}' if batched else 'gen_NOT_BATCHED'
save_str = f'{save_path}{k}k_steps_{i}_{batch_str}.wav'
_ = model.generate(m, save_str, batched, target, overlap, hp.mu_law)
def gen_from_file(model, load_path, save_path, batched, target, overlap) :
k = model.get_step() // 1000
file_name = load_path.split('/')[-1]
wav = load_wav(load_path)
save_wav(wav, f'{save_path}__{file_name}__{k}k_steps_target.wav')
mel = melspectrogram(wav)
mel = torch.tensor(mel).unsqueeze(0)
batch_str = f'gen_batched_target{target}_overlap{overlap}' if batched else 'gen_NOT_BATCHED'
save_str = f'{save_path}__{file_name}__{k}k_steps_{batch_str}.wav'
_ = model.generate(mel, save_str, batched, target, overlap, hp.mu_law)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Generate WaveRNN Samples')
parser.add_argument('--batched', '-b', dest='batched', action='store_true', help='Fast Batched Generation')
parser.add_argument('--unbatched', '-u', dest='batched', action='store_false', help='Slow Unbatched Generation')
parser.add_argument('--samples', '-s', type=int, help='[int] number of utterances to generate')
parser.add_argument('--target', '-t', type=int, help='[int] number of samples in each batch index')
parser.add_argument('--overlap', '-o', type=int, help='[int] number of crossover samples')
parser.add_argument('--file', '-f', type=str, help='[string/path] for testing a wav outside dataset')
parser.add_argument('--weights', '-w', type=str, help='[string/path] checkpoint file to load weights from')
parser.add_argument('--gta', '-g', dest='use_gta', action='store_true', help='Generate from GTA testset')
parser.set_defaults(batched=hp.voc_gen_batched)
parser.set_defaults(samples=hp.voc_gen_at_checkpoint)
parser.set_defaults(target=hp.voc_target)
parser.set_defaults(overlap=hp.voc_overlap)
parser.set_defaults(file=None)
parser.set_defaults(weights=None)
parser.set_defaults(gta=False)
args = parser.parse_args()
batched = args.batched
samples = args.samples
target = args.target
overlap = args.overlap
file = args.file
gta = args.gta
print('\nInitialising Model...\n')
model = Model(rnn_dims=hp.voc_rnn_dims,
fc_dims=hp.voc_fc_dims,
bits=hp.bits,
pad=hp.voc_pad,
upsample_factors=hp.voc_upsample_factors,
feat_dims=hp.num_mels,
compute_dims=hp.voc_compute_dims,
res_out_dims=hp.voc_res_out_dims,
res_blocks=hp.voc_res_blocks,
hop_length=hp.hop_length,
sample_rate=hp.sample_rate,
mode=hp.voc_mode).cuda()
paths = Paths(hp.data_path, hp.voc_model_id, hp.tts_model_id)
restore_path = args.weights if args.weights else paths.voc_latest_weights
model.restore(restore_path)
simple_table([('Generation Mode', 'Batched' if batched else 'Unbatched'),
('Target Samples', target if batched else 'N/A'),
('Overlap Samples', overlap if batched else 'N/A')])
_, test_set = get_vocoder_datasets(paths.data, 1, gta)
if file :
gen_from_file(model, file, paths.voc_output, batched, target, overlap)
else :
gen_testset(model, test_set, samples, batched, target, overlap, paths.voc_output)
print('\n\nExiting...\n')