forked from BlinkDL/RWKV-LM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run.py
98 lines (78 loc) · 3.46 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
import numpy as np
import math
import time
import types
import copy
import torch
from torch.nn import functional as F
from src.utils import TOKENIZER, Dataset
from src.model_run import RWKV_RNN
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cuda.matmul.allow_tf32 = True
np.set_printoptions(precision=4, suppress=True, linewidth=200)
### Step 1: set model ##################################################################################
ctx_len = 1024
n_layer = 6
n_embd = 512
model_type = 'RWKV' # 'RWKV' or 'RWKV-ffnPre'
# your trained model
MODEL_NAME = 'trained-1'
WORD_NAME = 'vocab' # the .json vocab (generated by train.py
# --> set UNKNOWN_CHAR to the rarest token in your vocab.json <--
# --> all unknown tokens in your context will be denoted by it <--
UNKNOWN_CHAR = ' ' # here we just set it to [space] for simplicity
RUN_DEVICE = 'cpu' # 'cpu' (already very fast) or 'cuda'
DEBUG_DEBUG = False # True False - show softmax output
### Step 2: set context ################################################################################
context = "\nIn the" # ==> this is your prompt
NUM_TRIALS = 999
LENGTH_PER_TRIAL = 500
TEMPERATURE = 1.0
top_p = 0.7
top_p_newline = 0.9
########################################################################################################
print(f'Loading {MODEL_NAME}...')
model = RWKV_RNN(MODEL_NAME, RUN_DEVICE, model_type, n_layer, n_embd, ctx_len)
tokenizer = TOKENIZER(WORD_NAME, UNKNOWN_CHAR=UNKNOWN_CHAR)
########################################################################################################
context = tokenizer.refine_context(context)
print('\nYour prompt has ' + str(len(context)) + ' tokens.')
print('\n--> Currently the first run takes a while if your prompt is long, as we are using RNN to process the prompt. Use GPT to build the hidden state for better speed. <--\n')
for TRIAL in range(1 if DEBUG_DEBUG else NUM_TRIALS):
t_begin = time.time_ns()
src_len = len(context)
ctx = [tokenizer.stoi.get(s, tokenizer.UNKNOWN_CHAR) for s in context]
print(('-' * 30) + context, end='')
model.clear()
if TRIAL == 0:
init_state = types.SimpleNamespace()
for i in range(src_len):
x = ctx[:i+1]
if i == src_len - 1:
init_state.out = model.run(x)
else:
model.run(x)
model.save(init_state)
else:
model.load(init_state)
for i in range(src_len, src_len + (1 if DEBUG_DEBUG else LENGTH_PER_TRIAL)):
x = ctx[:i+1]
x = x[-ctx_len:]
if i == src_len:
out = copy.deepcopy(init_state.out)
else:
out = model.run(x)
if DEBUG_DEBUG:
print('model', np.array(x), '==>', np.array(
out), np.max(out), np.min(out))
char = tokenizer.sample_logits(out, x, ctx_len, temperature=TEMPERATURE,
top_p_usual=top_p, top_p_newline=top_p_newline)
char = char.item()
print(tokenizer.itos[int(char)], end='', flush=True)
ctx += [char]
t_end = time.time_ns()
print("\n----------", round((t_end - t_begin) / (10 ** 9), 2), end='s ')