forked from gngdb/pytorch-minimize
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hessian_logistic_regression.py
118 lines (99 loc) · 4.12 KB
/
hessian_logistic_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import datasets, transforms
from pytorch_minimize.optim import MinimizeWrapper
class LogReg(nn.Module):
def __init__(self):
super(LogReg, self).__init__()
self.fc = nn.Linear(28*28, 10)
def forward(self, x):
n = x.size(0)
x = self.fc(x.view(n,-1))
output = F.log_softmax(x, dim=1)
return output
def train(args, model, device, dataset, optimizer):
model.train()
data, target = dataset
data, target = data.to(device), target.to(device)
class Closure():
def __init__(self, model):
self.model = model
@staticmethod
def loss(model):
output = model(data)
return F.nll_loss(output, target)
def __call__(self):
optimizer.zero_grad()
loss = self.loss(self.model)
loss.backward()
self._loss = loss.item()
return loss
closure = Closure(model)
optimizer.step(closure)
print(f"Train Loss: {closure._loss:.2f}")
def test(model, device, dataset):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
data, target = dataset
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, reduction='mean').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(data),
100. * correct / len(data)))
def main():
# Training settings
parser = argparse.ArgumentParser(description='Logistic Regression'
' Example Optimization with Hessian')
parser.add_argument('--method', type=str, default='Newton-CG',
choices=["Newton-CG", "dogleg", "trust-ncg",
"trust-krylov", "trust-exact", "trust-constr"],
help='Which scipy.optimize.minimize method to use.')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--save-model', action='store_true', default=False,
help='For Saving the current Model')
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
# train_kwargs = {'batch_size': 50000} # all of MNIST
# test_kwargs = {'batch_size': 10000} # all of MNIST
train_kwargs = {'batch_size': 500}
test_kwargs = {'batch_size': 100}
if use_cuda:
cuda_kwargs = {'num_workers': 1,
'pin_memory': True,
'shuffle': True}
train_kwargs.update(cuda_kwargs)
test_kwargs.update(cuda_kwargs)
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
dataset1 = datasets.MNIST('../data', train=True, download=True,
transform=transform)
dataset2 = datasets.MNIST('../data', train=False,
transform=transform)
train_loader = torch.utils.data.DataLoader(dataset1,**train_kwargs)
test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs)
train_dataset = next(iter(train_loader))
test_dataset = next(iter(test_loader))
model = LogReg().to(device)
minimizer_args = dict(method=args.method, options={'disp':True, 'maxiter':100})
optimizer = MinimizeWrapper(model.parameters(), minimizer_args)
train(args, model, device, train_dataset, optimizer)
test(model, device, test_dataset)
if args.save_model:
torch.save(model.state_dict(), "mnist_logreg.pt")
if __name__ == '__main__':
main()