Skip to content

Latest commit

 

History

History
552 lines (381 loc) · 13.8 KB

about.rst

File metadata and controls

552 lines (381 loc) · 13.8 KB

About us

History

This project was started in 2007 as a Google Summer of Code project by David Cournapeau. Later that year, Matthieu Brucher started work on this project as part of his thesis.

In 2010 Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort and Vincent Michel of INRIA took leadership of the project and made the first public release, February the 1st 2010. Since then, several releases have appeared following a ~ 3-month cycle, and a thriving international community has been leading the development.

Governance

The decision making process and governance structure of scikit-learn is laid out in the :ref:`governance document <governance>`.

Authors

The following people are currently core contributors to scikit-learn's development and maintenance:

Please do not email the authors directly to ask for assistance or report issues. Instead, please see What's the best way to ask questions about scikit-learn in the FAQ.

.. seealso::

   :ref:`How you can contribute to the project <contributing>`

Triage Team

The following people are active contributors who also help with :ref:`triaging issues <bug_triaging>`, PRs, and general maintenance:

Emeritus Core Developers

The following people have been active contributors in the past, but are no longer active in the project:

Citing scikit-learn

If you use scikit-learn in a scientific publication, we would appreciate citations to the following paper:

Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.

Bibtex entry:

@article{scikit-learn,
 title={Scikit-learn: Machine Learning in {P}ython},
 author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
         and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
         and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
         Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
 journal={Journal of Machine Learning Research},
 volume={12},
 pages={2825--2830},
 year={2011}
}

If you want to cite scikit-learn for its API or design, you may also want to consider the following paper:

API design for machine learning software: experiences from the scikit-learn project, Buitinck et al., 2013.

Bibtex entry:

@inproceedings{sklearn_api,
  author    = {Lars Buitinck and Gilles Louppe and Mathieu Blondel and
               Fabian Pedregosa and Andreas Mueller and Olivier Grisel and
               Vlad Niculae and Peter Prettenhofer and Alexandre Gramfort
               and Jaques Grobler and Robert Layton and Jake VanderPlas and
               Arnaud Joly and Brian Holt and Ga{\"{e}}l Varoquaux},
  title     = {{API} design for machine learning software: experiences from the scikit-learn
               project},
  booktitle = {ECML PKDD Workshop: Languages for Data Mining and Machine Learning},
  year      = {2013},
  pages = {108--122},
}

Artwork

High quality PNG and SVG logos are available in the doc/logos/ source directory.

images/scikit-learn-logo-notext.png

Funding

Scikit-Learn is a community driven project, however institutional and private grants help to assure its sustainability.

The project would like to thank the following funders.


The Members of the Scikit-Learn Consortium at Inria Foundation fund Olivier Grisel, Guillaume Lemaitre, Jérémie du Boisberranger and Chiara Marmo.

bcg
 
axa bnp
fujitsu msn
 
dataiku
 
inria

Columbia University funds Andreas Müller since 2016

themes/scikit-learn/static/img/columbia.png

Andreas Müller received a grant to improve scikit-learn from the Alfred P. Sloan Foundation . This grant supports the position of Nicolas Hug and Thomas J. Fan.

images/sloan_banner.png

The University of Sydney funds Joel Nothman since July 2017.

themes/scikit-learn/static/img/sydney-primary.jpeg

Zalando SE funds Adrin Jalali since August 2020.

images/zalando_logo.png

Past Sponsors

INRIA actively supports this project. It has provided funding for Fabian Pedregosa (2010-2012), Jaques Grobler (2012-2013) and Olivier Grisel (2013-2017) to work on this project full-time. It also hosts coding sprints and other events.

images/inria-logo.jpg

Paris-Saclay Center for Data Science funded one year for a developer to work on the project full-time (2014-2015), 50% of the time of Guillaume Lemaitre (2016-2017) and 50% of the time of Joris van den Bossche (2017-2018).

images/cds-logo.png

Anaconda, Inc funded Adrin Jalali in 2019.

images/anaconda.png

NYU Moore-Sloan Data Science Environment funded Andreas Mueller (2014-2016) to work on this project. The Moore-Sloan Data Science Environment also funds several students to work on the project part-time.

images/nyu_short_color.png

Télécom Paristech funded Manoj Kumar (2014), Tom Dupré la Tour (2015), Raghav RV (2015-2017), Thierry Guillemot (2016-2017) and Albert Thomas (2017) to work on scikit-learn.

themes/scikit-learn/static/img/telecom.png

The Labex DigiCosme funded Nicolas Goix (2015-2016), Tom Dupré la Tour (2015-2016 and 2017-2018), Mathurin Massias (2018-2019) to work part time on scikit-learn during their PhDs. It also funded a scikit-learn coding sprint in 2015.

themes/scikit-learn/static/img/digicosme.png

The following students were sponsored by Google to work on scikit-learn through the Google Summer of Code program.


The NeuroDebian project providing Debian packaging and contributions is supported by Dr. James V. Haxby (Dartmouth College).

Sprints

The International 2019 Paris sprint was kindly hosted by AXA. Also some participants could attend thanks to the support of the Alfred P. Sloan Foundation, the Python Software Foundation (PSF) and the DATAIA Institute.


The 2013 International Paris Sprint was made possible thanks to the support of Télécom Paristech, tinyclues, the French Python Association and the Fonds de la Recherche Scientifique.


The 2011 International Granada sprint was made possible thanks to the support of the PSF and tinyclues.

Donating to the project

If you are interested in donating to the project or to one of our code-sprints, you can use the Paypal button below or the NumFOCUS Donations Page (if you use the latter, please indicate that you are donating for the scikit-learn project).

All donations will be handled by NumFOCUS, a non-profit-organization which is managed by a board of Scipy community members. NumFOCUS's mission is to foster scientific computing software, in particular in Python. As a fiscal home of scikit-learn, it ensures that money is available when needed to keep the project funded and available while in compliance with tax regulations.

The received donations for the scikit-learn project mostly will go towards covering travel-expenses for code sprints, as well as towards the organization budget of the project [1].




Notes

[1]Regarding the organization budget, in particular, we might use some of the donated funds to pay for other project expenses such as DNS, hosting or continuous integration services.

Infrastructure support