Skip to content

Latest commit

 

History

History
 
 

darknet

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

Model Zoo

Model Test Size APval AP50val AP75val APSval APMval APLval batch1 throughput
YOLOv4-CSP 640 49.1% 67.7% 53.8% 32.1% 54.4% 63.2% 76 fps
YOLOR-CSP 640 49.2% 67.6% 53.7% 32.9% 54.4% 63.0% -
YOLOv4-CSP-X 640 50.9% 69.3% 55.4% 35.3% 55.8% 64.8% 53 fps
YOLOR-CSP-X 640 51.1% 69.6% 55.7% 35.7% 56.0% 65.2% -

Installation

https://github.com/AlexeyAB/darknet

Docker environment (recommended)

Expand
# get code
git clone https://github.com/AlexeyAB/darknet

# create the docker container, you can change the share memory size if you have more.
nvidia-docker run --name yolor -it -v your_coco_path/:/coco/ -v your_code_path/:/yolor --shm-size=64g nvcr.io/nvidia/pytorch:21.02-py3

# apt install required packages
apt update
apt install -y libopencv-dev

# edit Makefile
#GPU=1
#CUDNN=1
#CUDNN_HALF=1
#OPENCV=1
#AVX=1
#OPENMP=1
#LIBSO=1
#ZED_CAMERA=0
#ZED_CAMERA_v2_8=0
#
#USE_CPP=0
#DEBUG=0
#
#ARCH= -gencode arch=compute_52,code=[sm_70,compute_70] \
#      -gencode arch=compute_61,code=[sm_75,compute_75] \
#      -gencode arch=compute_61,code=[sm_80,compute_80] \
#      -gencode arch=compute_61,code=[sm_86,compute_86]
#
#...

# build
make -j8

Testing

To reproduce inference speed, using:

CUDA_VISIBLE_DEVICES=0 ./darknet detector demo cfg/coco.data cfg/yolov4-csp.cfg weights/yolov4-csp.weights source/test.mp4 -dont_show -benchmark