This repository was archived by the owner on Mar 19, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbfs.py
71 lines (57 loc) · 1.64 KB
/
bfs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# Uses python3
##############################
# @author Daniel Avdar
# @input: #edges, #vertices (one line)
# the graph's edges (following lines)
# the vertices u,v to find the path between them (last line)
# @output: the minimum number of edges in a path from 𝑢 to 𝑣,
# or −1 if there is no path.
# @description: bfs algorithm for finding the shortest path in a graph
#
##############################
import sys
import queue
q = queue.Queue()
from numpy import inf
def generate_DWG_raph(edges, n):
graph = {}
for i in range(1, n + 1):
graph[i] = [False, dict(), False, [inf, i]]
for (a, b) in edges:
graph[a][1][b] = 1
graph[b][1][a] = 1
return graph
def distance(graph, s, t):
qu = queue.Queue()
def set_v(v, w):
graph[v][3][0] = min(w, graph[v][3][0])
set_v(s, 0)
qu.put(graph[s][3])
graph[s][2] = True
while not qu.empty():
w, v = qu.get()
graph[v][0] = True
for i in graph[v][1].keys():
if graph[i][0]:
continue
set_v(i, w + graph[v][1][i])
if graph[i][2]:
continue
graph[i][2] = True
qu.put(graph[i][3])
return graph[t][3][0] if graph[t][3][0] != inf else -1
def main():
input = sys.stdin.read()
data = list(map(int, input.split()))
n, m = data[0:2]
data = data[2:]
edges = list(zip(data[0:(2 * m):2], data[1:(2 * m):2]))
g = generate_DWG_raph(edges, n)
if not data:
print(-1)
return
s, t = data[-2], data[-1]
print(distance(g, s, t))
if __name__ == '__main__':
main()
# todo git