forked from jl1990/EfficientZero
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
136 lines (124 loc) · 7.53 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import argparse
import logging.config
import os
import numpy as np
import ray
import torch
from torch.utils.tensorboard import SummaryWriter
from core.test import test
from core.train import train
from core.utils import init_logger, make_results_dir, set_seed
if __name__ == '__main__':
# Lets gather arguments
parser = argparse.ArgumentParser(description='EfficientZero')
parser.add_argument('--env', required=True, help='Name of the environment')
parser.add_argument('--result_dir', default=os.path.join(os.getcwd(), 'results'),
help="Directory Path to store results (default: %(default)s)")
parser.add_argument('--case', required=True, choices=['atari'],
help="It's used for switching between different domains(default: %(default)s)")
parser.add_argument('--opr', required=True, choices=['train', 'test'])
parser.add_argument('--amp_type', required=True, choices=['torch_amp', 'none'],
help='choose automated mixed precision type')
parser.add_argument('--no_cuda', action='store_true', default=False, help='no cuda usage (default: %(default)s)')
parser.add_argument('--debug', action='store_true', default=False,
help='If enabled, logs additional values '
'(gradients, target value, reward distribution, etc.) (default: %(default)s)')
parser.add_argument('--render', action='store_true', default=False,
help='Renders the environment (default: %(default)s)')
parser.add_argument('--save_video', action='store_true', default=False, help='save video in test.')
parser.add_argument('--force', action='store_true', default=False,
help='Overrides past results (default: %(default)s)')
parser.add_argument('--cpu_actor', type=int, default=14, help='batch cpu actor')
parser.add_argument('--gpu_actor', type=int, default=20, help='batch bpu actor')
parser.add_argument('--p_mcts_num', type=int, default=8, help='number of parallel mcts')
parser.add_argument('--seed', type=int, default=0, help='seed (default: %(default)s)')
parser.add_argument('--num_gpus', type=int, default=4, help='gpus available')
parser.add_argument('--num_cpus', type=int, default=80, help='cpus available')
parser.add_argument('--revisit_policy_search_rate', type=float, default=0.99,
help='Rate at which target policy is re-estimated (default: %(default)s)')
parser.add_argument('--use_root_value', action='store_true', default=False,
help='choose to use root value in reanalyzing')
parser.add_argument('--use_priority', action='store_true', default=False,
help='Uses priority for data sampling in replay buffer. '
'Also, priority for new data is calculated based on loss (default: False)')
parser.add_argument('--use_max_priority', action='store_true', default=False, help='max priority')
parser.add_argument('--test_episodes', type=int, default=10, help='Evaluation episode count (default: %(default)s)')
parser.add_argument('--use_augmentation', action='store_true', default=True, help='use augmentation')
parser.add_argument('--augmentation', type=str, default=['shift', 'intensity'], nargs='+',
choices=['none', 'rrc', 'affine', 'crop', 'blur', 'shift', 'intensity'],
help='Style of augmentation')
parser.add_argument('--info', type=str, default='none', help='debug string')
parser.add_argument('--load_model', action='store_true', default=False, help='choose to load model')
parser.add_argument('--model_path', type=str, default='./results/test_model.p', help='load model path')
# Process arguments
args = parser.parse_args()
args.device = 'cuda' if (not args.no_cuda) and torch.cuda.is_available() else 'cpu'
assert args.revisit_policy_search_rate is None or 0 <= args.revisit_policy_search_rate <= 1, \
' Revisit policy search rate should be in [0,1]'
if args.opr == 'train':
ray.init(num_gpus=args.num_gpus, num_cpus=args.num_cpus,
object_store_memory=150 * 1024 * 1024 * 1024)
else:
ray.init()
# seeding random iterators
set_seed(args.seed)
# import corresponding configuration , neural networks and envs
if args.case == 'atari':
from config.atari import game_config
else:
raise Exception('Invalid --case option')
# set config as per arguments
exp_path = game_config.set_config(args)
exp_path, log_base_path = make_results_dir(exp_path, args)
# set-up logger
init_logger(log_base_path)
logging.getLogger('train').info('Path: {}'.format(exp_path))
logging.getLogger('train').info('Param: {}'.format(game_config.get_hparams()))
device = game_config.device
try:
if args.opr == 'train':
summary_writer = SummaryWriter(exp_path, flush_secs=10)
if args.load_model and os.path.exists(args.model_path):
model_path = args.model_path
else:
model_path = None
model, weights = train(game_config, summary_writer, model_path)
model.set_weights(weights)
total_steps = game_config.training_steps + game_config.last_steps
test_score, test_path = test(game_config, model.to(device), total_steps, game_config.test_episodes,
device, render=False, save_video=args.save_video, final_test=True, use_pb=True)
mean_score = test_score.mean()
std_score = test_score.std()
test_log = {
'mean_score': mean_score,
'std_score': std_score,
}
for key, val in test_log.items():
summary_writer.add_scalar('train/{}'.format(key), np.mean(val), total_steps)
test_msg = '#{:<10} Test Mean Score of {}: {:<10} (max: {:<10}, min:{:<10}, std: {:<10})' \
''.format(total_steps, game_config.env_name, mean_score, test_score.max(), test_score.min(), std_score)
logging.getLogger('train_test').info(test_msg)
if args.save_video:
logging.getLogger('train_test').info('Saving video in path: {}'.format(test_path))
elif args.opr == 'test':
assert args.load_model
if args.model_path is None:
model_path = game_config.model_path
else:
model_path = args.model_path
assert os.path.exists(model_path), 'model not found at {}'.format(model_path)
model = game_config.get_uniform_network().to(device)
model.load_state_dict(torch.load(model_path, map_location=torch.device(device)))
test_score, test_path = test(game_config, model, 0, args.test_episodes, device=device, render=args.render,
save_video=args.save_video, final_test=True, use_pb=True)
mean_score = test_score.mean()
std_score = test_score.std()
logging.getLogger('test').info('Test Mean Score: {} (max: {}, min: {})'.format(mean_score, test_score.max(), test_score.min()))
logging.getLogger('test').info('Test Std Score: {}'.format(std_score))
if args.save_video:
logging.getLogger('test').info('Saving video in path: {}'.format(test_path))
else:
raise Exception('Please select a valid operation(--opr) to be performed')
ray.shutdown()
except Exception as e:
logging.getLogger('root').error(e, exc_info=True)