-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreplay.py
27 lines (22 loc) · 760 Bytes
/
replay.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
from collections import deque
import ray
import numpy as np
@ray.remote
class ReplayBuffer:
def __init__(self, config):
self.replay_buffer_size = config["buffer_size"]
self.buffer = deque(maxlen=self.replay_buffer_size)
self.total_env_samples = 0
def add(self, experience_list):
experience_list = experience_list
for e in experience_list:
self.buffer.append(e)
self.total_env_samples += 1
return True
def sample(self, n):
if len(self.buffer) > n:
sample_ix = np.random.randint(
len(self.buffer), size=n)
return [self.buffer[ix] for ix in sample_ix]
def get_total_env_samples(self):
return self.total_env_samples