|
| 1 | +import gym |
| 2 | +from gym import spaces |
| 3 | +from gym.utils import seeding |
| 4 | +import numpy as np |
| 5 | +from os import path |
| 6 | + |
| 7 | + |
| 8 | +import gym |
| 9 | +from gym import spaces |
| 10 | +from gym.utils import seeding |
| 11 | +import numpy as np |
| 12 | +from os import path |
| 13 | + |
| 14 | + |
| 15 | +class PenEnv2(gym.Env): |
| 16 | + metadata = { |
| 17 | + 'render.modes': ['human', 'rgb_array'], |
| 18 | + 'video.frames_per_second': 30 |
| 19 | + } |
| 20 | + |
| 21 | + def __init__(self, env_config={}): |
| 22 | + self.max_speed = 8 |
| 23 | + self.max_torque = 2. |
| 24 | + self.dt = .05 |
| 25 | + self.g = env_config.get("g", 10) |
| 26 | + self.m = 1. |
| 27 | + self.l = 1. |
| 28 | + self.viewer = None |
| 29 | + |
| 30 | + high = np.array([1., 1., self.max_speed], dtype=np.float32) |
| 31 | + self.action_space = spaces.Box( |
| 32 | + low=-self.max_torque, |
| 33 | + high=self.max_torque, shape=(1,), |
| 34 | + dtype=np.float32 |
| 35 | + ) |
| 36 | + self.observation_space = spaces.Box( |
| 37 | + low=-high, |
| 38 | + high=high, |
| 39 | + dtype=np.float32 |
| 40 | + ) |
| 41 | + |
| 42 | + self.seed() |
| 43 | + |
| 44 | + def seed(self, seed=None): |
| 45 | + self.np_random, seed = seeding.np_random(seed) |
| 46 | + return [seed] |
| 47 | + |
| 48 | + def step(self, u): |
| 49 | + th, thdot = self.state # th := theta |
| 50 | + |
| 51 | + g = self.g |
| 52 | + m = self.m |
| 53 | + l = self.l |
| 54 | + dt = self.dt |
| 55 | + |
| 56 | + u = np.clip(u, -self.max_torque, self.max_torque)[0] |
| 57 | + self.last_u = u # for rendering |
| 58 | + costs = angle_normalize(th) ** 2 + .1 * thdot ** 2 + .001 * (u ** 2) |
| 59 | + |
| 60 | + newthdot = thdot + (-3 * g / (2 * l) * np.sin(th + np.pi) + 3. / (m * l ** 2) * u) * dt |
| 61 | + newth = th + newthdot * dt |
| 62 | + newthdot = np.clip(newthdot, -self.max_speed, self.max_speed) |
| 63 | + |
| 64 | + self.state = np.array([newth, newthdot]) |
| 65 | + return self._get_obs(), -costs, False, {} |
| 66 | + |
| 67 | + def reset(self): |
| 68 | + high = np.array([np.pi, 1]) |
| 69 | + self.state = self.np_random.uniform(low=-high, high=high) |
| 70 | + self.last_u = None |
| 71 | + self.m = np.random.uniform(low=0.5, high=2.0) |
| 72 | + return self._get_obs() |
| 73 | + |
| 74 | + def _get_obs(self): |
| 75 | + theta, thetadot = self.state |
| 76 | + return np.array([np.cos(theta), np.sin(theta), thetadot]) |
| 77 | + |
| 78 | + def render(self, mode='human'): |
| 79 | + if self.viewer is None: |
| 80 | + from gym.envs.classic_control import rendering |
| 81 | + self.viewer = rendering.Viewer(500, 500) |
| 82 | + self.viewer.set_bounds(-2.2, 2.2, -2.2, 2.2) |
| 83 | + rod = rendering.make_capsule(1, .2) |
| 84 | + rod.set_color(.8, .3, .3) |
| 85 | + self.pole_transform = rendering.Transform() |
| 86 | + rod.add_attr(self.pole_transform) |
| 87 | + self.viewer.add_geom(rod) |
| 88 | + axle = rendering.make_circle(.05) |
| 89 | + axle.set_color(0, 0, 0) |
| 90 | + self.viewer.add_geom(axle) |
| 91 | + fname = path.join(path.dirname(__file__), "assets/clockwise.png") |
| 92 | + self.img = rendering.Image(fname, 1., 1.) |
| 93 | + self.imgtrans = rendering.Transform() |
| 94 | + self.img.add_attr(self.imgtrans) |
| 95 | + |
| 96 | + self.viewer.add_onetime(self.img) |
| 97 | + self.pole_transform.set_rotation(self.state[0] + np.pi / 2) |
| 98 | + if self.last_u: |
| 99 | + self.imgtrans.scale = (-self.last_u / 2, np.abs(self.last_u) / 2) |
| 100 | + |
| 101 | + return self.viewer.render(return_rgb_array=mode == 'rgb_array') |
| 102 | + |
| 103 | + def close(self): |
| 104 | + if self.viewer: |
| 105 | + self.viewer.close() |
| 106 | + self.viewer = None |
| 107 | + |
| 108 | + def sample_tasks(self, n_tasks): |
| 109 | + # Mass is a random float between 0.5 and 2 |
| 110 | + return np.random.uniform(low=0.5, high=2.0, size=(n_tasks, )) |
| 111 | + |
| 112 | + def set_task(self, task): |
| 113 | + """ |
| 114 | + Args: |
| 115 | + task: task of the meta-learning environment |
| 116 | + """ |
| 117 | + self.m = task |
| 118 | + |
| 119 | + def get_task(self): |
| 120 | + """ |
| 121 | + Returns: |
| 122 | + task: task of the meta-learning environment |
| 123 | + """ |
| 124 | + return self.m |
| 125 | + |
| 126 | + |
| 127 | +def angle_normalize(x): |
| 128 | + return (((x+np.pi) % (2*np.pi)) - np.pi) |
0 commit comments