|
| 1 | +from collections import deque |
| 2 | +import ray |
| 3 | +import gym |
| 4 | +import numpy as np |
| 5 | +from models import get_Q_network |
| 6 | + |
| 7 | + |
| 8 | +@ray.remote |
| 9 | +class Actor: |
| 10 | + def __init__(self, |
| 11 | + actor_id, |
| 12 | + replay_buffer, |
| 13 | + parameter_server, |
| 14 | + config, |
| 15 | + eps, |
| 16 | + eval=False): |
| 17 | + self.actor_id = actor_id |
| 18 | + self.replay_buffer = replay_buffer |
| 19 | + self.parameter_server = parameter_server |
| 20 | + self.config = config |
| 21 | + self.eps = eps |
| 22 | + self.eval = eval |
| 23 | + self.Q = get_Q_network(config) |
| 24 | + self.env = gym.make(config["env"]) |
| 25 | + self.local_buffer = [] |
| 26 | + self.obs_shape = config["obs_shape"] |
| 27 | + self.n_actions = config["n_actions"] |
| 28 | + self.multi_step_n = config.get("n_step", 1) |
| 29 | + self.q_update_freq = config.get("q_update_freq", 100) |
| 30 | + self.send_experience_freq = \ |
| 31 | + config.get("send_experience_freq", 100) |
| 32 | + self.continue_sampling = True |
| 33 | + self.cur_episodes = 0 |
| 34 | + self.cur_steps = 0 |
| 35 | + |
| 36 | + def update_q_network(self): |
| 37 | + if self.eval: |
| 38 | + pid = \ |
| 39 | + self.parameter_server.get_eval_weights.remote() |
| 40 | + else: |
| 41 | + pid = \ |
| 42 | + self.parameter_server.get_weights.remote() |
| 43 | + new_weights = ray.get(pid) |
| 44 | + if new_weights: |
| 45 | + self.Q.set_weights(new_weights) |
| 46 | + else: |
| 47 | + print("Weights are not available yet, skipping.") |
| 48 | + |
| 49 | + def get_action(self, observation): |
| 50 | + observation = observation.reshape((1, -1)) |
| 51 | + q_estimates = self.Q.predict(observation)[0] |
| 52 | + if np.random.uniform() <= self.eps: |
| 53 | + action = np.random.randint(self.n_actions) |
| 54 | + else: |
| 55 | + action = np.argmax(q_estimates) |
| 56 | + return action |
| 57 | + |
| 58 | + def get_n_step_trans(self, n_step_buffer): |
| 59 | + gamma = self.config['gamma'] |
| 60 | + discounted_return = 0 |
| 61 | + cum_gamma = 1 |
| 62 | + for trans in list(n_step_buffer)[:-1]: |
| 63 | + _, _, reward, _ = trans |
| 64 | + discounted_return += cum_gamma * reward |
| 65 | + cum_gamma *= gamma |
| 66 | + observation, action, _, _ = n_step_buffer[0] |
| 67 | + last_observation, _, _, done = n_step_buffer[-1] |
| 68 | + experience = (observation, action, discounted_return, |
| 69 | + last_observation, done, cum_gamma) |
| 70 | + return experience |
| 71 | + |
| 72 | + def stop(self): |
| 73 | + self.continue_sampling = False |
| 74 | + |
| 75 | + def sample(self): |
| 76 | + print("Starting sampling in actor {}".format(self.actor_id)) |
| 77 | + self.update_q_network() |
| 78 | + observation = self.env.reset() |
| 79 | + episode_reward = 0 |
| 80 | + episode_length = 0 |
| 81 | + n_step_buffer = deque(maxlen=self.multi_step_n + 1) |
| 82 | + while self.continue_sampling: |
| 83 | + action = self.get_action(observation) |
| 84 | + next_observation, reward, \ |
| 85 | + done, info = self.env.step(action) |
| 86 | + n_step_buffer.append((observation, action, |
| 87 | + reward, done)) |
| 88 | + if len(n_step_buffer) == self.multi_step_n + 1: |
| 89 | + self.local_buffer.append( |
| 90 | + self.get_n_step_trans(n_step_buffer)) |
| 91 | + self.cur_steps += 1 |
| 92 | + episode_reward += reward |
| 93 | + episode_length += 1 |
| 94 | + if done: |
| 95 | + if self.eval: |
| 96 | + break |
| 97 | + next_observation = self.env.reset() |
| 98 | + if len(n_step_buffer) > 1: |
| 99 | + self.local_buffer.append( |
| 100 | + self.get_n_step_trans(n_step_buffer)) |
| 101 | + self.cur_episodes += 1 |
| 102 | + episode_reward = 0 |
| 103 | + episode_length = 0 |
| 104 | + observation = next_observation |
| 105 | + if self.cur_steps % \ |
| 106 | + self.send_experience_freq == 0 and not self.eval: |
| 107 | + self.send_experience_to_replay() |
| 108 | + if self.cur_steps % \ |
| 109 | + self.q_update_freq == 0 and not self.eval: |
| 110 | + self.update_q_network() |
| 111 | + return episode_reward |
| 112 | + |
| 113 | + def send_experience_to_replay(self): |
| 114 | + rf = self.replay_buffer.add.remote(self.local_buffer) |
| 115 | + ray.wait([rf]) |
| 116 | + self.local_buffer = [] |
0 commit comments