forked from HICAI-ZJU/KANO
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
70 lines (56 loc) · 2.49 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import warnings
warnings.filterwarnings('ignore')
from rdkit import RDLogger
RDLogger.DisableLog('rdApp.*')
from argparse import Namespace
from logging import Logger
import os
from typing import Tuple
import numpy as np
import torch
torch.cuda.empty_cache()
from chemprop.train.run_training import run_training
from chemprop.data.utils import get_task_names
from chemprop.utils import makedirs
from chemprop.parsing import parse_train_args, modify_train_args
from chemprop.torchlight import initialize_exp
def run_stat(args: Namespace, logger: Logger = None) -> Tuple[float, float]:
"""k-time independent runs"""
info = logger.info if logger is not None else print
# Initialize relevant variables
init_seed = args.seed
save_dir = args.save_dir
task_names = get_task_names(args.data_path)
# Run training on different random seeds for each run
all_scores = []
for run_num in range(args.num_runs):
info(f'Run {run_num}')
args.seed = init_seed + run_num
args.save_dir = os.path.join(save_dir, f'run_{run_num}')
makedirs(args.save_dir)
model_scores = run_training(args, False, logger)
all_scores.append(model_scores)
all_scores = np.array(all_scores)
# Report results
info(f'{args.num_runs}-time runs')
# Report scores for each run
for run_num, scores in enumerate(all_scores):
info(f'Seed {init_seed + run_num} ==> test {args.metric} = {np.nanmean(scores):.6f}')
if args.show_individual_scores:
for task_name, score in zip(task_names, scores):
info(f'Seed {init_seed + run_num} ==> test {task_name} {args.metric} = {score:.6f}')
# Report scores across models
avg_scores = np.nanmean(all_scores, axis=1) # average score for each model across tasks
mean_score, std_score = np.nanmean(avg_scores), np.nanstd(avg_scores)
info(f'Overall test {args.metric} = {mean_score:.6f} +/- {std_score:.6f}')
if args.show_individual_scores:
for task_num, task_name in enumerate(task_names):
info(f'Overall test {task_name} {args.metric} = '
f'{np.nanmean(all_scores[:, task_num]):.6f} +/- {np.nanstd(all_scores[:, task_num]):.6f}')
return mean_score, std_score
if __name__ == '__main__':
args = parse_train_args()
modify_train_args(args)
logger, args.save_dir = initialize_exp(Namespace(**args.__dict__))
mean_auc_score, std_auc_score = run_stat(args, logger)
print(f'Results: {mean_auc_score:.5f} +/- {std_auc_score:.5f}')