Skip to content

Latest commit

 

History

History
 
 

P5_Image_Classification

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MLND Project 5 - Image Classification

Introduction

在这一项目中,你需要对 CIFAR-10 数据集 进行图像分类。

该数据集包含飞机,狗,猫等一共10个类型的图片,共50000张。你需要先对数据集进行预处理,然后用卷积神经网络对所有样本进行训练。你要先将图像归一化(normalize),对标签进行独热编码(one-hot encode the labels),然后建立卷积层、最大池化层和全连接层。最后,你将看到该模型对样本图像作出的预测结果。

Performance

  • MNIST

    Model Epochs Accuracy
    传统神经网络 FC1024, FC1024 50 98%
    卷积神经网络 类VGG结构 50 99.5%
  • CIFAR10

    Model Epochs Accuracy
    TensorFlow CONV16, CONV32, CONV64, FC128 100 70%
    TensorFlow CONV16, CONV32, CONV64, FC128 (Xavier, BN, L2) 100 72%
    Keras 类VGG (CONV / CONV / POOL) * 3, FC128 100 80%
    Keras 类VGG (CONV / CONV / POOL) * 3, FC128 (With Data Augmentation) 100 89%

Methodology

  • Preprocessing

    • Normalize
    • One-hot Encoding
  • Model Construction

    • Input Layer
    • Convolution + Maxpooling Layer
    • Flatten Layer
    • Fully Connected Layer
    • Dropout
    • Output Layer
  • Parameter Fine Tuning

    • epoch
    • batch_size
    • stddev
    • conv_num_output
    • conv_size (width x height)
    • conv_stride
    • pooling_size (width x height)
    • pooling_stride
    • full_num_output
    • Activation Function (Conv Layer, Fully Connected Layer)
    • Padding Style