forked from aravindr93/mjrl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinear_nn_comparison.py
53 lines (48 loc) · 1.76 KB
/
linear_nn_comparison.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from mjrl.utils.gym_env import GymEnv
from mjrl.policies.gaussian_mlp import MLP
from mjrl.policies.gaussian_linear import LinearPolicy
from mjrl.baselines.quadratic_baseline import QuadraticBaseline
from mjrl.baselines.mlp_baseline import MLPBaseline
from mjrl.algos.npg_cg import NPG
from mjrl.utils.train_agent import train_agent
import mjrl.envs
import time as timer
SEED = 500
# NN policy
# ==================================
e = GymEnv('mjrl_swimmer-v0')
policy = MLP(e.spec, hidden_sizes=(32,32), seed=SEED)
baseline = MLPBaseline(e.spec, reg_coef=1e-3, batch_size=64, epochs=2, learn_rate=1e-3)
agent = NPG(e, policy, baseline, normalized_step_size=0.1, seed=SEED, save_logs=True)
ts = timer.time()
train_agent(job_name='swimmer_nn_exp1',
agent=agent,
seed=SEED,
niter=50,
gamma=0.995,
gae_lambda=0.97,
num_cpu=1,
sample_mode='trajectories',
num_traj=10,
save_freq=5,
evaluation_rollouts=5)
print("time taken for NN policy training = %f" % (timer.time()-ts))
# Linear policy
# ==================================
e = GymEnv('mjrl_swimmer-v0')
policy = LinearPolicy(e.spec, seed=SEED)
baseline = MLPBaseline(e.spec, reg_coef=1e-3, batch_size=64, epochs=2, learn_rate=1e-3)
agent = NPG(e, policy, baseline, normalized_step_size=0.1, seed=SEED, save_logs=True)
ts = timer.time()
train_agent(job_name='swimmer_linear_exp1',
agent=agent,
seed=SEED,
niter=50,
gamma=0.995,
gae_lambda=0.97,
num_cpu=1,
sample_mode='trajectories',
num_traj=10,
save_freq=5,
evaluation_rollouts=5)
print("time taken for linear policy training = %f" % (timer.time()-ts))