forked from switchablenorms/CelebAMask-HQ
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
136 lines (110 loc) · 4.33 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import os
import torch
import numpy as np
from torch.autograd import Variable
import torch.nn.functional as F
def make_folder(path, version):
if not os.path.exists(os.path.join(path, version)):
os.makedirs(os.path.join(path, version))
def tensor2var(x, grad=False):
if torch.cuda.is_available():
x = x.cuda()
return Variable(x, requires_grad=grad)
def var2tensor(x):
return x.data.cpu()
def var2numpy(x):
return x.data.cpu().numpy()
def denorm(x):
out = (x + 1) / 2
return out.clamp_(0, 1)
def uint82bin(n, count=8):
"""returns the binary of integer n, count refers to amount of bits"""
return ''.join([str((n >> y) & 1) for y in range(count-1, -1, -1)])
def labelcolormap(N):
if N == 19: # CelebAMask-HQ
cmap = np.array([(0, 0, 0), (204, 0, 0), (76, 153, 0),
(204, 204, 0), (51, 51, 255), (204, 0, 204), (0, 255, 255),
(51, 255, 255), (102, 51, 0), (255, 0, 0), (102, 204, 0),
(255, 255, 0), (0, 0, 153), (0, 0, 204), (255, 51, 153),
(0, 204, 204), (0, 51, 0), (255, 153, 51), (0, 204, 0)],
dtype=np.uint8)
else:
cmap = np.zeros((N, 3), dtype=np.uint8)
for i in range(N):
r, g, b = 0, 0, 0
id = i
for j in range(7):
str_id = uint82bin(id)
r = r ^ (np.uint8(str_id[-1]) << (7-j))
g = g ^ (np.uint8(str_id[-2]) << (7-j))
b = b ^ (np.uint8(str_id[-3]) << (7-j))
id = id >> 3
cmap[i, 0] = r
cmap[i, 1] = g
cmap[i, 2] = b
return cmap
class Colorize(object):
def __init__(self, n=19):
self.cmap = labelcolormap(n)
self.cmap = torch.from_numpy(self.cmap[:n])
def __call__(self, gray_image):
size = gray_image.size()
color_image = torch.ByteTensor(3, size[1], size[2]).fill_(0)
for label in range(0, len(self.cmap)):
mask = (label == gray_image[0]).cpu()
color_image[0][mask] = self.cmap[label][0]
color_image[1][mask] = self.cmap[label][1]
color_image[2][mask] = self.cmap[label][2]
return color_image
def tensor2label(label_tensor, n_label, imtype=np.uint8):
if n_label == 0:
return tensor2im(label_tensor, imtype)
label_tensor = label_tensor.cpu().float()
if label_tensor.size()[0] > 1:
label_tensor = label_tensor.max(0, keepdim=True)[1]
label_tensor = Colorize(n_label)(label_tensor)
#label_numpy = np.transpose(label_tensor.numpy(), (1, 2, 0))
label_numpy = label_tensor.numpy()
label_numpy = label_numpy / 255.0
return label_numpy
def generate_label(inputs, imsize):
pred_batch = []
for input in inputs:
input = input.view(1, 19, imsize, imsize)
pred = np.squeeze(input.data.max(1)[1].cpu().numpy(), axis=0)
pred_batch.append(pred)
pred_batch = np.array(pred_batch)
pred_batch = torch.from_numpy(pred_batch)
label_batch = []
for p in pred_batch:
p = p.view(1, imsize, imsize)
label_batch.append(tensor2label(p, 19))
label_batch = np.array(label_batch)
label_batch = torch.from_numpy(label_batch)
return label_batch
def generate_label_plain(inputs, imsize):
pred_batch = []
for input in inputs:
input = input.view(1, 19, imsize, imsize)
pred = np.squeeze(input.data.max(1)[1].cpu().numpy(), axis=0)
#pred = pred.reshape((1, 512, 512))
pred_batch.append(pred)
pred_batch = np.array(pred_batch)
pred_batch = torch.from_numpy(pred_batch)
label_batch = []
for p in pred_batch:
label_batch.append(p.numpy())
label_batch = np.array(label_batch)
return label_batch
def cross_entropy2d(input, target, weight=None, size_average=True):
n, c, h, w = input.size()
nt, ht, wt = target.size()
# Handle inconsistent size between input and target
if h != ht or w != wt:
input = F.interpolate(input, size=(ht, wt), mode="bilinear", align_corners=True)
input = input.transpose(1, 2).transpose(2, 3).contiguous().view(-1, c)
target = target.view(-1)
loss = F.cross_entropy(
input, target, weight=weight, size_average=size_average, ignore_index=250
)
return loss