forked from huggingface/open_asr_leaderboard
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_eval.py
238 lines (203 loc) · 7.52 KB
/
run_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
"""Script to evaluate a pretrained SpeechBrain model from the 🤗 Hub.
Authors
* Adel Moumen 2023 <[email protected]>
* Sanchit Gandhi 2024 <[email protected]>
"""
import argparse
import time
import evaluate
from normalizer import data_utils
from tqdm import tqdm
import torch
import speechbrain.inference.ASR as ASR
from speechbrain.utils.data_utils import batch_pad_right
import os
def get_model(
speechbrain_repository: str,
speechbrain_pretrained_class_name: str,
**kwargs,
):
"""Fetch a pretrained SpeechBrain model from the SpeechBrain 🤗 Hub.
Arguments
---------
speechbrain_repository : str
The name of the SpeechBrain repository to fetch the pretrained model from. E.g. `asr-crdnn-rnnlm-librispeech`.
speechbrain_pretrained_class_name : str
The name of the SpeechBrain pretrained class to fetch. E.g. `EncoderASR`.
See: https://github.com/speechbrain/speechbrain/blob/develop/speechbrain/pretrained/interfaces.py
**kwargs
Additional keyword arguments to pass to override the default run options of the pretrained model.
Returns
-------
SpeechBrain pretrained model
The Pretrained model.
Example
-------
>>> from open_asr_leaderboard.speechbrain.run_eval import get_model
>>> model = get_model("asr-crdnn-rnnlm-librispeech", "EncoderASR", device="cuda:0")
"""
run_opt_defaults = {
"device": "cpu",
"data_parallel_count": -1,
"data_parallel_backend": False,
"distributed_launch": False,
"distributed_backend": "nccl",
"jit_module_keys": None,
}
run_opts = {**run_opt_defaults, **kwargs}
kwargs = {
"source": f"{speechbrain_repository}",
"savedir": f"pretrained_models/{speechbrain_repository}",
"run_opts": run_opts,
}
try:
model_class = getattr(ASR, speechbrain_pretrained_class_name)
except AttributeError:
raise AttributeError(
f"SpeechBrain Pretrained class: {speechbrain_pretrained_class_name} not found in pretrained.py"
)
return model_class.from_hparams(**kwargs)
def main(args):
"""Run the evaluation script."""
if args.device == -1:
device = "cpu"
else:
device = f"cuda:{args.device}"
model = get_model(
args.source, args.speechbrain_pretrained_class_name, device=device
)
def benchmark(batch):
# Load audio inputs
audios = [torch.from_numpy(sample["array"]) for sample in batch["audio"]]
minibatch_size = len(audios)
# START TIMING
start_time = time.time()
audios, audio_lens = batch_pad_right(audios)
audios = audios.to(device)
audio_lens = audio_lens.to(device)
predictions, _ = model.transcribe_batch(audios, audio_lens)
# END TIMING
runtime = time.time() - start_time
# normalize by minibatch size since we want the per-sample time
batch["transcription_time_s"] = minibatch_size * [runtime / minibatch_size]
# normalize transcriptions with English normalizer
batch["predictions"] = [data_utils.normalizer(pred) for pred in predictions]
batch["references"] = batch["norm_text"]
return batch
if args.warmup_steps is not None:
dataset = data_utils.load_data(args)
dataset = data_utils.prepare_data(dataset)
num_warmup_samples = args.warmup_steps * args.batch_size
if args.streaming:
warmup_dataset = dataset.take(num_warmup_samples)
else:
warmup_dataset = dataset.select(range(min(num_warmup_samples, len(dataset))))
warmup_dataset = iter(warmup_dataset.map(benchmark, batch_size=args.batch_size, batched=True))
for _ in tqdm(warmup_dataset, desc="Warming up..."):
continue
dataset = data_utils.load_data(args)
if args.max_eval_samples is not None and args.max_eval_samples > 0:
print(f"Subsampling dataset to first {args.max_eval_samples} samples!")
if args.streaming:
dataset = dataset.take(args.max_eval_samples)
else:
dataset = dataset.select(range(min(args.max_eval_samples, len(dataset))))
dataset = data_utils.prepare_data(dataset)
dataset = dataset.map(
benchmark, batch_size=args.batch_size, batched=True, remove_columns=["audio"],
)
all_results = {
"audio_length_s": [],
"transcription_time_s": [],
"predictions": [],
"references": [],
}
result_iter = iter(dataset)
for result in tqdm(result_iter, desc="Samples..."):
for key in all_results:
all_results[key].append(result[key])
# Write manifest results (WER and RTFX)
manifest_path = data_utils.write_manifest(
all_results["references"],
all_results["predictions"],
args.source,
args.dataset_path,
args.dataset,
args.split,
audio_length=all_results["audio_length_s"],
transcription_time=all_results["transcription_time_s"],
)
print("Results saved at path:", os.path.abspath(manifest_path))
wer_metric = evaluate.load("wer")
wer = wer_metric.compute(
references=all_results["references"], predictions=all_results["predictions"]
)
wer = round(100 * wer, 2)
rtfx = round(sum(all_results["audio_length_s"]) / sum(all_results["transcription_time_s"]), 2)
print("WER:", wer, "%", "RTFx:", rtfx)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--source",
type=str,
required=True,
help="SpeechBrain model repository. E.g. `asr-crdnn-rnnlm-librispeech`",
)
parser.add_argument(
"--speechbrain_pretrained_class_name",
type=str,
required=True,
help="SpeechBrain pretrained class name. E.g. `EncoderASR`",
)
parser.add_argument(
"--dataset_path",
type=str,
default="hf-audio/esb-datasets-test-only-sorted",
help="Dataset path. By default, it is `esb/datasets`",
)
parser.add_argument(
"--dataset",
type=str,
required=True,
help="Dataset name. *E.g.* `'librispeech_asr` for the LibriSpeech ASR dataset, or `'common_voice'` for Common Voice. The full list of dataset names "
"can be found at `https://huggingface.co/datasets/esb/datasets`",
)
parser.add_argument(
"--split",
type=str,
default="test",
help="Split of the dataset. *E.g.* `'validation`' for the dev split, or `'test'` for the test split.",
)
parser.add_argument(
"--device",
type=int,
default=-1,
help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
)
parser.add_argument(
"--batch_size",
type=int,
default=16,
help="Number of samples to go through each streamed batch.",
)
parser.add_argument(
"--max_eval_samples",
type=int,
default=None,
help="Number of samples to be evaluated. Put a lower number e.g. 64 for testing this script.",
)
parser.add_argument(
"--no-streaming",
dest="streaming",
action="store_false",
help="Choose whether you'd like to download the entire dataset or stream it during the evaluation.",
)
parser.add_argument(
"--warmup_steps",
type=int,
default=5,
help="Number of warm-up steps to run before launching the timed runs.",
)
args = parser.parse_args()
parser.set_defaults(streaming=True)
main(args)