-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathverifier_util.py
310 lines (257 loc) · 11.9 KB
/
verifier_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
from nnverify.common.result import Result, Results
from nnverify.common import RESULT_DIR
from nnverify.bnb import Split, is_relu_split, is_input_split, branch
from nnverify import config
from nnverify.common import Status
from nnverify.specs.spec import Spec, SpecList
import nnverify.specs.spec as specs
import torch.nn as nn
import copy
import random
import csv
import torch
import torchvision
from torchvision import transforms
from nnverify import util
from nnverify.specs.properties.acasxu import get_acas_spec
from nnverify.specs.property import Property, InputSpecType, OutSpecType
from nnverify.specs.out_spec import Constraint
from nnverify.specs.relu_spec import Reluspec
from nnverify.util import prepare_data
from nnverify.common import Status
from nnverify.common.dataset import Dataset
class Result_Olive(Result):
def __init__(self, _time, _ver_output, tree_size=1, visited_nodes=1, lb=0):
super().__init__(_time, _ver_output, tree_size)
self.visited = visited_nodes
self.lb = lb
class Results_Olive(Results):
def __init__(self, args, props=None, option=None):
super().__init__(args)
self.avg_nodes = 0
self.option = option
self.props = props
def compute_stats(self):
count = len(self.results_list)
for res in self.results_list:
self.avg_time += (res.time / count)
self.avg_tree_size += (res.tree_size / count)
self.avg_nodes += (res.visited / count)
if res.ver_output not in self.output_count:
self.output_count[res.ver_output] = 0
self.output_count[res.ver_output] += 1
dir_name = RESULT_DIR + 'csv/'
file_name = dir_name + self.option + "_" + self.get_csv_file_name()
with open(file_name, 'a+') as f:
writer = csv.writer(f)
for i in range(len(self.results_list)):
res = self.results_list[i]
writer.writerow([i, res.ver_output, ' tree size:', res.tree_size, ' time:', res.time, ' visited nodes',
res.visited])
writer.writerow(['Average time:', self.avg_time, ' Average tree size', self.avg_tree_size])
writer.writerow([self.output_count])
class Spec_D(Spec):
def __init__(self, input_spec, relu_spec=None, parent=None, status=Status.UNKNOWN, depth=0):
super().__init__(input_spec, relu_spec, parent, status)
self.lb_pre = 0
self.depth = depth
self.mctsVisited= 1
def reset_status(self):
self.status = Status.UNKNOWN
self.lb_pre = self.lb
self.lb = 0
def get_children(self):
if len(self.children) == 0:
return 0, 0
if len(self.children) == 2:
return self.children[0], self.children[1]
def get_root(self):
if self.parent is None:
return self
return self.parent.get_root()
def split_spec(spec, split_type, split_score=None, inp_template=None, args=None, net=None, transformer=None):
if is_relu_split(split_type):
spec.chosen_split = choose_relu(split_type, spec.relu_spec, spec=spec, split_score=split_score,
inp_template=inp_template, args=args, transformer=transformer)
split_relu_specs = spec.relu_spec.split_spec(split_type, spec.chosen_split)
child_specs = [Spec_D(spec.input_spec, rs, parent=spec, depth=spec.depth + 1) for rs in split_relu_specs]
elif is_input_split(split_type):
spec.chosen_split = branch.choose_split_dim(spec.input_spec, split_type, net=net)
split_inp_specs = spec.input_spec.split_spec(split_type, spec.chosen_split)
child_specs = [Spec_D(ins, spec.relu_spec, parent=spec, depth=spec.depth + 1) for ins in split_inp_specs]
else:
raise ValueError("Unknown split!")
spec.children += child_specs
return child_specs
def split_chosen_spec(spec, split_type, chosen_split):
spec.chosen_split = chosen_split
if is_relu_split(split_type):
split_relu_specs = spec.relu_spec.split_spec(split_type, chosen_split)
child_specs = [Spec_D(spec.input_spec, rs, parent=spec, depth=spec.depth + 1) for rs in split_relu_specs]
elif is_input_split(split_type):
split_inp_specs = spec.input_spec.split_spec(split_type, chosen_split)
child_specs = [Spec_D(ins, spec.relu_spec, parent=spec, depth=spec.depth + 1) for ins in split_inp_specs]
else:
raise ValueError("Unknown split!")
spec.children += child_specs
return child_specs
def choose_relu(split, relu_spec, spec=None, split_score=None, inp_template=None, args=None, transformer=None):
"""
Chooses the relu that is split in branch and bound.
@param: relu_spec contains relu_mask which is a map that maps relus to -1/0/1. 0 here indicates that the relu
is ambiguous
"""
relu_mask = relu_spec.relu_mask
if split == Split.RELU_RAND:
all_relus = []
# Collect all un-split relus
for relu in relu_mask.keys():
if relu_mask[relu] == 0 and relu[0] == 2:
all_relus.append(relu)
return random.choice(all_relus)
# BaBSR based on various estimates of importance
elif split == Split.RELU_GRAD or split == Split.RELU_ESIP_SCORE or split == Split.RELU_ESIP_SCORE2:
# Choose the ambiguous relu that has the maximum score in relu_score
if split_score is None:
raise ValueError("relu_score should be set while using relu_grad splitting mode")
max_score, chosen_relu = 0, None
for relu in relu_mask.keys():
if relu_mask[relu] == 0 and relu in split_score.keys():
if split_score[relu] >= max_score:
max_score, chosen_relu = split_score[relu], relu
if chosen_relu is None:
raise ValueError("Attempt to split should only take place if there are ambiguous relus!")
print("Chosen relu for splitting: " + str(chosen_relu) + " " + str(max_score))
return chosen_relu
elif split == Split.RELU_KFSB:
k = 3
if split_score is None:
raise ValueError("relu_score should be set while using kFSB splitting mode")
if spec is None:
raise ValueError("spec should be set while using kFSB splitting mode")
candidate_relu_score_list = []
for relu in relu_mask.keys():
if relu_mask[relu] == 0 and relu in split_score.keys():
candidate_relu_score_list.append((relu, split_score[relu]))
candidate_relu_score_list = sorted(candidate_relu_score_list, key=lambda x: x[1], reverse=True)
candidate_relus = [candidate_relu_score_list[i][0] for i in range(k)]
candidate_relu_lbs = {}
for relu in candidate_relus:
cp_spec = copy.deepcopy(spec)
split_relu_specs = cp_spec.relu_spec.split_spec(split, relu)
child_specs = [Spec_D(cp_spec.input_spec, rs, parent=cp_spec, depth=cp_spec.depth + 1) for rs in
split_relu_specs]
candidate_lb = 0
for child_spec in child_specs:
transformer.update_spec(child_spec.input_spec, relu_mask=child_spec.relu_spec.relu_mask)
lb, _, _ = transformer.compute_lb(complete=True)
if lb is not None:
candidate_lb = min(candidate_lb, lb)
candidate_relu_lbs[relu] = candidate_lb
return max(candidate_relu_lbs, key=candidate_relu_lbs.get)
else:
# Returning just the first un-split relu
for relu in relu_mask.keys():
if relu_mask[relu] == 0:
return relu
raise ValueError("No relu chosen!")
def branch_unsolved(spec_list, split, split_score=None, inp_template=None, args=None, net=None, transformer=None):
new_spec_list = SpecList()
verified_specs = SpecList()
for spec in spec_list:
if spec.status == Status.UNKNOWN:
add_spec = split_spec(spec, split, split_score=split_score,
inp_template=inp_template,
args=args, net=net, transformer=transformer)
new_spec_list += SpecList(add_spec)
else:
verified_specs.append(spec)
return new_spec_list, verified_specs
def get_verified_nodes(spec_List):
num_nodes = 0
def _helper(spec):
if (spec == 0):
return 0
left = _helper(spec.get_children()[0])
right = _helper(spec.get_children()[1])
return 1 + left + right
for spec in spec_List:
num_nodes += _helper(spec)
return num_nodes
def get_verified_spec(spec):
def _helper(spec):
if (spec == 0):
return 0
left = _helper(spec.get_children()[0])
right = _helper(spec.get_children()[1])
return 1 + left + right
return _helper(spec)
def get_mini_lb(root):
if root == 0 or root is None:
return None
left_min = get_mini_lb(root.get_children()[0])
right_min = get_mini_lb(root.get_children()[1])
mini_node = min([node for node in [root, left_min, right_min] if node is not None], key=lambda x: x.lb)
return mini_node
def count_relu_layers(model):
relu_count = 0
for layer in model.children():
if isinstance(layer, nn.ReLU):
relu_count += 1
assert (relu_count != 0)
return relu_count
def get_specs(dataset, spec_type=InputSpecType.LINF, eps=0.01, count=None, mode="easy"):
if dataset == Dataset.MNIST or dataset == Dataset.CIFAR10:
if spec_type == InputSpecType.LINF:
if count is None:
count = 100
testloader = prepare_data(dataset, batch_size=count)
inputs, labels = next(iter(testloader))
props = specs.get_linf_spec(inputs, labels, eps, dataset)
elif spec_type == InputSpecType.PATCH:
if count is None:
count = 10
testloader = prepare_data(dataset, batch_size=count)
inputs, labels = next(iter(testloader))
props = specs.get_patch_specs(inputs, labels, eps, dataset, p_width=2, p_length=2)
width = inputs.shape[2] - 2 + 1
length = inputs.shape[3] - 2 + 1
pos_patch_count = width * length
specs_per_patch = pos_patch_count
# labels = labels.unsqueeze(1).repeat(1, pos_patch_count).flatten()
return props, inputs
elif dataset == Dataset.ACAS:
return specs.get_acas_props(count), None
elif dataset == Dataset.OVAL_CIFAR:
return get_oval_cifar_props(count, mode)
else:
raise ValueError("Unsupported specification dataset!")
def get_oval_cifar_props(count, mode="easy"):
if mode == "easy":
pdprops = 'base_easy.pkl' # pdprops = 'base_med.pkl' or pdprops = 'base_hard.pkl'
elif mode =="med":
pdprops = 'base_med.pkl'
elif mode =="hard":
pdprops = 'base_hard.pkl'
elif mode =="deep":
pdprops = 'deep.pkl'
elif mode =="wide":
pdprops = 'wide.pkl'
path = 'data/cifar_exp/'
import pandas as pd
gt_results = pd.read_pickle(path + pdprops)
# batch ids were used for parallel processing in the original paper.
batch_ids = gt_results.index[0:count]
props = []
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.225, 0.225, 0.225])
cifar_test = torchvision.datasets.CIFAR10('./data/', train=False, download=True,
transform=transforms.Compose([transforms.ToTensor(), normalize]))
for new_idx, idx in enumerate(batch_ids):
imag_idx = gt_results.loc[idx]['Idx']
adv_label = gt_results.loc[idx]['prop']
eps_temp = gt_results.loc[idx]['Eps']
ilb, iub, true_label = util.ger_property_from_id(imag_idx, eps_temp, cifar_test)
out_constr = Constraint(OutSpecType.LOCAL_ROBUST, label=true_label, adv_label=adv_label)
props.append(Property(ilb, iub, InputSpecType.LINF, out_constr, Dataset.CIFAR10))
return props, None