forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcustom_cast_op.cc
64 lines (55 loc) · 2.2 KB
/
custom_cast_op.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <iostream>
#include <vector>
#include "paddle/extension.h"
paddle::DataType ConvertDtype(const std::string& data_type) {
if (data_type == "float16") {
return paddle::DataType::FLOAT16;
} else if (data_type == "float32") {
return paddle::DataType::FLOAT32;
} else if (data_type == "float64") {
return paddle::DataType::FLOAT64;
} else {
PD_THROW("DataType Not Supported.");
}
}
std::vector<paddle::Tensor> CastForward(const paddle::Tensor& x,
const std::string& data_type) {
return {paddle::experimental::cast(x, ConvertDtype(data_type))};
}
std::vector<paddle::DataType> CastForwardInferDtype(
const paddle::DataType& input_dtype, const std::string& data_type) {
return {ConvertDtype(data_type)};
}
std::vector<paddle::Tensor> CastBackward(const paddle::Tensor& grad_out,
const std::string& data_type) {
return {paddle::experimental::cast(grad_out, ConvertDtype(data_type))};
}
std::vector<paddle::DataType> CastBackwardInferDtype(
const paddle::DataType& grad_out_dtype, const std::string& data_type) {
return {ConvertDtype(data_type)};
}
PD_BUILD_OP(custom_cast)
.Inputs({"X"})
.Attrs({"data_type: std::string"})
.Outputs({"Out"})
.SetKernelFn(PD_KERNEL(CastForward))
.SetInferDtypeFn(PD_INFER_DTYPE(CastForwardInferDtype));
PD_BUILD_GRAD_OP(custom_cast)
.Inputs({paddle::Grad("Out")})
.Attrs({"data_type: std::string"})
.Outputs({paddle::Grad("X")})
.SetKernelFn(PD_KERNEL(CastBackward))
.SetInferDtypeFn(PD_INFER_DTYPE(CastBackwardInferDtype));