forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_gradient_clip_ipu.py
126 lines (105 loc) · 3.5 KB
/
test_gradient_clip_ipu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from op_test_ipu import IPUOpTest
import paddle
import paddle.static
class TestBase(IPUOpTest):
def setUp(self):
self.set_atol()
self.set_data_feed()
self.set_feed_attr()
self.set_attrs()
self.set_training()
@property
def fp16_enabled(self):
return False
def set_atol(self):
super().set_atol()
self.atol = 1e-6
self.rtol = 1e-5
def set_data_feed(self):
self.feed_fp32 = {
"image": np.random.uniform(size=[1, 3, 10, 10]).astype('float32'),
}
def set_feed_attr(self):
self.feed_shape = [x.shape for x in self.feed_fp32.values()]
self.feed_list = list(self.feed_fp32.keys())
self.feed_dtype = [x.dtype for x in self.feed_fp32.values()]
def set_attrs(self):
self.attrs = {
"optimizer": 'sgd',
"weight_decay": 0.0,
}
def set_training(self):
self.is_training = True
self.epoch = 100
@IPUOpTest.static_graph
def build_model(self):
image = paddle.static.data(
name=self.feed_list[0], shape=self.feed_shape[0], dtype='float32'
)
conv1 = paddle.nn.Conv2D(
in_channels=image.shape[1],
out_channels=3,
kernel_size=3,
bias_attr=False,
)(image)
loss = paddle.mean(conv1)
self.fetch_list = [loss]
weight_decay = self.attrs['weight_decay']
# Only support ClipGradByGlobalNorm
clip = paddle.nn.ClipGradByGlobalNorm(clip_norm=1.0)
if self.attrs['optimizer'] == 'sgd':
opt = paddle.optimizer.SGD(
learning_rate=1e-1, weight_decay=weight_decay, grad_clip=clip
)
elif self.attrs['optimizer'] == 'adam':
opt = paddle.optimizer.Adam(
learning_rate=1e-1, weight_decay=weight_decay, grad_clip=clip
)
elif self.attrs['optimizer'] == 'lamb':
opt = paddle.optimizer.Lamb(
learning_rate=1e-1,
lamb_weight_decay=weight_decay,
grad_clip=clip,
)
else:
raise ValueError(
f"Not supported optimizer {self.attrs['optimizer']} for test"
)
opt.minimize(loss)
def run_model(self, exec_mode):
self.run_op_test(exec_mode)
def test(self):
for m in IPUOpTest.ExecutionMode:
if not self.skip_mode(m):
self.build_model()
self.run_model(m)
self.check()
class TestAdam(TestBase):
def set_attrs(self):
self.attrs = {
"optimizer": 'adam',
"weight_decay": 0.0,
}
class TestLamb(TestBase):
def set_attrs(self):
self.attrs = {
"optimizer": 'lamb',
"weight_decay": 0.1,
}
if __name__ == "__main__":
unittest.main()