-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
51 lines (43 loc) · 1.47 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from torch import nn
from dataset import TwitterData
from dataset import Dataset # for pickle
from model import BertFF, BertAE, BertEncoderFF
from trainer import train, evaluate, geodesic_distance
def train_bert_ff():
dataset = TwitterData()
bert_feed_forward = BertFF()
train(bert_feed_forward,
dataset.train_data,
dataset.val_data,
learning_rate=1e-3,
criterion=geodesic_distance,
epochs=10,
batch_size=64)
evaluate(bert_feed_forward, dataset.test_data, batch_size=64, criterion=geodesic_distance)
def train_bert_ae():
dataset = TwitterData()
bert_autoencoder = BertAE()
train(bert_autoencoder,
dataset.train_data,
dataset.val_data,
learning_rate=1e-3,
criterion=nn.MSELoss(),
epochs=10,
batch_size=64,
AE=True)
evaluate(bert_autoencoder, dataset.test_data, batch_size=64, criterion=geodesic_distance, AE=True)
def train_bert_encoder_ff():
dataset = TwitterData()
encoder = BertAE()
encoder.load('models/BertEncoder_10.pt')
bert_encoder_ff = BertEncoderFF(encoder, encoder.size())
train(bert_encoder_ff,
dataset.train_data,
dataset.val_data,
learning_rate=1e-3,
criterion=geodesic_distance,
epochs=10,
batch_size=64)
evaluate(bert_encoder_ff, dataset.test_data, batch_size=64, criterion=geodesic_distance)
if __name__ == "__main__":
train_bert_ae()