forked from databricks/Spark-The-Definitive-Guide
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathStructured_APIs-Chapter_7_Aggregations.py
181 lines (105 loc) · 4.06 KB
/
Structured_APIs-Chapter_7_Aggregations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
df = spark.read.format("csv")\
.option("header", "true")\
.option("inferSchema", "true")\
.load("/data/retail-data/all/*.csv")\
.coalesce(5)
df.cache()
df.createOrReplaceTempView("dfTable")
# COMMAND ----------
from pyspark.sql.functions import count
df.select(count("StockCode")).show() # 541909
# COMMAND ----------
from pyspark.sql.functions import countDistinct
df.select(countDistinct("StockCode")).show() # 4070
# COMMAND ----------
from pyspark.sql.functions import approx_count_distinct
df.select(approx_count_distinct("StockCode", 0.1)).show() # 3364
# COMMAND ----------
from pyspark.sql.functions import first, last
df.select(first("StockCode"), last("StockCode")).show()
# COMMAND ----------
from pyspark.sql.functions import min, max
df.select(min("Quantity"), max("Quantity")).show()
# COMMAND ----------
from pyspark.sql.functions import sum
df.select(sum("Quantity")).show() # 5176450
# COMMAND ----------
from pyspark.sql.functions import sumDistinct
df.select(sumDistinct("Quantity")).show() # 29310
# COMMAND ----------
from pyspark.sql.functions import sum, count, avg, expr
df.select(
count("Quantity").alias("total_transactions"),
sum("Quantity").alias("total_purchases"),
avg("Quantity").alias("avg_purchases"),
expr("mean(Quantity)").alias("mean_purchases"))\
.selectExpr(
"total_purchases/total_transactions",
"avg_purchases",
"mean_purchases").show()
# COMMAND ----------
from pyspark.sql.functions import var_pop, stddev_pop
from pyspark.sql.functions import var_samp, stddev_samp
df.select(var_pop("Quantity"), var_samp("Quantity"),
stddev_pop("Quantity"), stddev_samp("Quantity")).show()
# COMMAND ----------
from pyspark.sql.functions import skewness, kurtosis
df.select(skewness("Quantity"), kurtosis("Quantity")).show()
# COMMAND ----------
from pyspark.sql.functions import corr, covar_pop, covar_samp
df.select(corr("InvoiceNo", "Quantity"), covar_samp("InvoiceNo", "Quantity"),
covar_pop("InvoiceNo", "Quantity")).show()
# COMMAND ----------
from pyspark.sql.functions import collect_set, collect_list
df.agg(collect_set("Country"), collect_list("Country")).show()
# COMMAND ----------
from pyspark.sql.functions import count
df.groupBy("InvoiceNo").agg(
count("Quantity").alias("quan"),
expr("count(Quantity)")).show()
# COMMAND ----------
df.groupBy("InvoiceNo").agg(expr("avg(Quantity)"),expr("stddev_pop(Quantity)"))\
.show()
# COMMAND ----------
from pyspark.sql.functions import col, to_date
dfWithDate = df.withColumn("date", to_date(col("InvoiceDate"), "MM/d/yyyy H:mm"))
dfWithDate.createOrReplaceTempView("dfWithDate")
# COMMAND ----------
from pyspark.sql.window import Window
from pyspark.sql.functions import desc
windowSpec = Window\
.partitionBy("CustomerId", "date")\
.orderBy(desc("Quantity"))\
.rowsBetween(Window.unboundedPreceding, Window.currentRow)
# COMMAND ----------
from pyspark.sql.functions import max
maxPurchaseQuantity = max(col("Quantity")).over(windowSpec)
# COMMAND ----------
from pyspark.sql.functions import dense_rank, rank
purchaseDenseRank = dense_rank().over(windowSpec)
purchaseRank = rank().over(windowSpec)
# COMMAND ----------
from pyspark.sql.functions import col
dfWithDate.where("CustomerId IS NOT NULL").orderBy("CustomerId")\
.select(
col("CustomerId"),
col("date"),
col("Quantity"),
purchaseRank.alias("quantityRank"),
purchaseDenseRank.alias("quantityDenseRank"),
maxPurchaseQuantity.alias("maxPurchaseQuantity")).show()
# COMMAND ----------
dfNoNull = dfWithDate.drop()
dfNoNull.createOrReplaceTempView("dfNoNull")
# COMMAND ----------
rolledUpDF = dfNoNull.rollup("Date", "Country").agg(sum("Quantity"))\
.selectExpr("Date", "Country", "`sum(Quantity)` as total_quantity")\
.orderBy("Date")
rolledUpDF.show()
# COMMAND ----------
from pyspark.sql.functions import sum
dfNoNull.cube("Date", "Country").agg(sum(col("Quantity")))\
.select("Date", "Country", "sum(Quantity)").orderBy("Date").show()
# COMMAND ----------
pivoted = dfWithDate.groupBy("date").pivot("Country").sum()
# COMMAND ----------