Skip to content

Latest commit

 

History

History
 
 

papers

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

经典强化学习论文解读

该部分是蘑菇书的扩展内容,整理&总结&解读强化学习领域的经典论文。主要有DQN类、策略梯度类、模仿学习类、分布式强化学习、多任务强化学习、探索策略、分层强化学习以及其他技巧等方向的论文。后续会配有视频解读(与WhalePaper合作),会陆续上线Datawhale B站公众号

每周更新5篇左右的论文,欢迎关注。

如果在线阅读Markdown文件有问题(例如公式编译错误、图片显示较慢等),请下载到本地阅读,或观看PDF文件夹中的同名文件。

转发请加上链接&来源Easy RL项目

类别 论文题目 原文链接 视频解读
Value-based Playing Atari with Deep Reinforcement Learning (DQN) [Markdown] [PDF] https://arxiv.org/abs/1312.5602
DRQN: Deep Recurrent Q-Learning for Partially Observable MDPs [Markdown] [PDF] https://arxiv.org/abs/1507.06527
Dueling Network Architectures for Deep Reinforcement Learning (Dueling DQN) [Markdown] [PDF] https://arxiv.org/abs/1511.06581
Deep Reinforcement Learning with Double Q-learning (Double DQN) [Markdown] [PDF] https://arxiv.org/abs/1509.06461
NoisyDQN https://arxiv.org/pdf/1706.10295.pdf
QRDQN https://arxiv.org/pdf/1710.10044.pdf
CQL https://arxiv.org/pdf/2006.04779.pdf
Prioritized Experience Replay (PER) [Markdown] [PDF] https://arxiv.org/abs/1511.05952
Rainbow: Combining Improvements in Deep Reinforcement Learning (Rainbow) [Markdown] [PDF] https://arxiv.org/abs/1710.02298
A Distributional Perspective on Reinforcement Learning (C51) [Markdown] [PDF] https://arxiv.org/abs/1707.06887
Policy -based Asynchronous Methods for Deep Reinforcement Learning (A3C) [Markdown] [PDF] https://arxiv.org/abs/1602.01783
Trust Region Policy Optimization (TRPO) [Markdown] [PDF] https://arxiv.org/abs/1502.05477
High-Dimensional Continuous Control Using Generalized Advantage Estimation (GAE) [Markdown] [PDF] https://arxiv.org/abs/1506.02438
Proximal Policy Optimization Algorithms (PPO) [Markdown] [PDF] https://arxiv.org/abs/1707.06347
Emergence of Locomotion Behaviours in Rich Environments (PPO-Penalty) [Markdown] [PDF] https://arxiv.org/abs/1707.02286
Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTP) [Markdown] [PDF] https://arxiv.org/abs/1708.05144
Sample Efficient Actor-Critic with Experience Replay (ACER) https://arxiv.org/abs/1611.01224
Deterministic Policy Gradient Algorithms (DPG) [Markdown] [PDF] http://proceedings.mlr.press/v32/silver14.pdf
Continuous Control With Deep Reinforcement Learning (DDPG) https://arxiv.org/abs/1509.02971
Addressing Function Approximation Error in Actor-Critic Methods (TD3) [Markdown] [PDF] https://arxiv.org/abs/1802.09477
Q-Prop: Sample-Efficient Policy Gradient with An Off-Policy Critic (Q-Prop) https://arxiv.org/abs/1611.02247
Action-depedent Control Variates for Policy Optimization via Stein’s Identity (Stein Control Variates) [Markdown] [PDF] https://arxiv.org/abs/1710.11198
The Mirage of Action-Dependent Baselines in Reinforcement Learning [Markdown] [PDF] https://arxiv.org/abs/1802.10031
Bridging the Gap Between Value and Policy Based Reinforcement Learning (PCL) [Markdown] [PDF] https://arxiv.org/abs/1702.08892
MaxEntropy RL Soft Q learning https://arxiv.org/abs/1702.08165
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor (SAC) [Markdown] [PDF] https://arxiv.org/abs/1801.01290
Multi-Agent IQL https://web.media.mit.edu/~cynthiab/Readings/tan-MAS-reinfLearn.pdf
VDN https://arxiv.org/abs/1706.05296
QTRAN http://proceedings.mlr.press/v97/son19a/son19a.pdf
QMIX https://arxiv.org/abs/1803.11485
Weighted QMIX https://arxiv.org/abs/2006.10800
COMA https://ojs.aaai.org/index.php/AAAI/article/download/11794/11653
MAPPO https://arxiv.org/abs/2103.01955
MADDPG
Sparse reward Hierarchical DQN https://arxiv.org/abs/1604.06057
ICM https://arxiv.org/pdf/1705.05363.pdf
HER https://arxiv.org/pdf/1707.01495.pdf
Imitation Learning GAIL https://arxiv.org/abs/1606.03476
TD3+BC https://arxiv.org/pdf/2106.06860.pdf
Model based Dyna Q https://arxiv.org/abs/1801.06176