-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEuclidean.lua
67 lines (59 loc) · 1.74 KB
/
Euclidean.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
local Euclidean, parent = torch.class('nn.Euclidean', 'nn.Module')
function Euclidean:__init(inputSize,outputSize)
parent.__init(self)
self.weight = torch.Tensor(inputSize,outputSize)
self.gradWeight = torch.Tensor(inputSize,outputSize)
-- state
self.gradInput:resize(inputSize)
self.output:resize(outputSize)
self.temp = torch.Tensor(inputSize)
self:reset()
end
function Euclidean:reset(stdv)
if stdv then
stdv = stdv * math.sqrt(3)
else
stdv = 1./math.sqrt(self.weight:size(1))
end
if nn.oldSeed then
for i=1,self.weight:size(2) do
self.weight:select(2, i):apply(function()
return torch.uniform(-stdv, stdv)
end)
end
else
self.weight:uniform(-stdv, stdv)
end
end
function Euclidean:updateOutput(input)
self.output:zero()
for o = 1,self.weight:size(2) do
self.output[o] = input:dist(self.weight:select(2,o))
end
return self.output
end
function Euclidean:updateGradInput(input, gradOutput)
self:updateOutput(input)
if self.gradInput then
self.gradInput:zero()
for o = 1,self.weight:size(2) do
if self.output[o] ~= 0 then
self.temp:copy(input):add(-1,self.weight:select(2,o))
self.temp:mul(gradOutput[o]/self.output[o])
self.gradInput:add(self.temp)
end
end
return self.gradInput
end
end
function Euclidean:accGradParameters(input, gradOutput, scale)
self:updateOutput(input)
scale = scale or 1
for o = 1,self.weight:size(2) do
if self.output[o] ~= 0 then
self.temp:copy(self.weight:select(2,o)):add(-1,input)
self.temp:mul(gradOutput[o]/self.output[o])
self.gradWeight:select(2,o):add(scale, self.temp)
end
end
end