-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path02b-single-waveform-torch.py
254 lines (193 loc) · 7.6 KB
/
02b-single-waveform-torch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# -*- coding: utf-8 -*-
"""like 02a but instead of loading everything into RAM it uses on the fly loading to reduce the memory footprint"""
import matplotlib.pyplot as plt
# +
import numpy as np
import pandas as pd
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from tqdm import tqdm
from icae.models import single_event as AE_models
from icae.tools import nn, status_report, AE_training, AE_single as AEs_tools, data_loader, on_the_fly_loader
from icae.tools.config_loader import config
# %load_ext autoreload
# %autoreload 2
# -
# +
# in_file = config.root + config.data.retabled_single
# import dask.dataframe as dd
# ddf = dd.read_hdf(in_file, key=config.data.hdf_key)
# unique = ddf.reset_index()['frame'].unique()
# len(unique.compute())
# OUT: 393750
# -
df = pd.read_hdf(
config.root + config.data.retabled_single, mode="r", start=0, stop=1000
)
data_cols = list("t=%d" % i for i in range(128))
df[data_cols].iloc[10].values
class SingleEventsDataset(Dataset):
def __init__(self, size, transform=None):
data_cols = list("t=%d" % i for i in range(128))
self.file = config.root + config.data.retabled_single
self.size = size
self.df = pd.read_hdf(self.file, mode="r", start=0, stop=size)[data_cols]
self.transform = transform
def __len__(self):
return len(self.df)
def __getitem__(self, idx):
waveform = self.df.iloc[idx, :].values
waveform = waveform.astype("float").reshape(-1, 1)
sample = {"waveform": waveform}
if self.transform:
sample = self.transform(sample)
return sample
class SingleEventsDatasetOTF(Dataset):
def __init__(self, size, transform=None):
self.data_cols = list("t=%d" % i for i in range(128))
self.file = config.root + config.data.retabled_single
self.size = size
self.transform = transform
def __len__(self):
return self.size
def __getitem__(self, idx):
waveform = pd.read_hdf(self.file, mode="r", start=idx, stop=idx + 1)[
self.data_cols
].values
waveform = waveform.astype("float").reshape(-1, 1)
sample = {"waveform": waveform}
if self.transform:
sample = self.transform(sample)
return sample
class Preprocessing:
def __init__(self):
pass
def __call__(self, sample):
waveform = sample["waveform"]
waveform = torch.from_numpy(waveform)
waveform = waveform / waveform.mean()
return {"waveform": waveform}
dataset = SingleEventsDataset(5000, transforms.Compose([Preprocessing()]))
dataloader = DataLoader(dataset, batch_size=128, shuffle=True, num_workers=12)
# %%time
for i_batch, sample_batched in enumerate(tqdm(dataloader)):
a, b = i_batch, sample_batched
in_file = config.root + config.data.retabled_single
data = on_the_fly_loader.DataRepresentation(in_file, batch_size=1000)
# %%timeit
df = data.validation_sample()
# %%timeit
df = data.validation_sample_chunk()
model, encoder = AE_models.optimal_NB(3) # , loss_method = loss_method)
hist = []
tmp_hist = model.fit_generator(data.get_config(), steps_per_epoch=10)
hist.append(tmp_hist)
nn.plot_history(hist, True)
hist = []
tmp_hist = model.fit(**data.get_config(), epochs=10, verbose=1)
hist.append(tmp_hist)
nn.plot_history(hist, True)
status_report.init(model, "test: OTF loader, optimal_NB", "-")
status_report.save_plot("loss")
# data = AE_lib.preprocess(AE_lib.load_mc())
AE_training.plot_results(model, data.validation_sample(1000))
status_report.save_plot("overview-no-translation")
ß
inlier, outlier = AEs_tools.seperate_outliers(model, data)
status_report.save_plot("outlier-seperation")
status_report.save_obj(
{"inlier indices": inlier, "outlier indices": outlier}, "inlier-outlier-indices"
)
tools.plot_data.plot_latent_space(encoder, data[:10000000], log=True)
status_report.save_plot("latent-space")
def plot_loss_waveform_overview(model, data, max_loss=50, log=False):
pred = np.array(model.predict(data), dtype=float)
loss = tools.loss.EMD.numpy(data, pred).flatten()
plt.figure(figsize=[20, 20])
min_loss = loss.min()
steps = 10
window = (max_loss - min_loss) / steps
loss_intervals = np.array(
[
np.linspace(min_loss, max_loss - window, 10),
np.linspace(min_loss, max_loss - window, 10) + window,
]
).T
for col, interval in enumerate(loss_intervals):
a, b = interval
d = data[(loss > a) & (loss < b)]
l = loss[(loss > a) & (loss < b)]
for row in range(np.min([10, len(d)])):
plt.subplot(10, 10, 1 + row * 10 + col)
i = np.random.randint(0, len(d))
plt.title("loss: %d" % (l[i]))
plt.plot(d[i])
plt.axis("off")
plt.tight_layout()
plt.subplot(11, 1, 11)
plt.hist(loss, len(loss) // 100)
plt.xlabel("loss")
plt.ylabel("number of events")
if log:
plt.yscale("log")
plt.grid()
plt.xlim(min_loss, max_loss)
plot_loss_waveform_overview(model, data, 100)
status_report.save_plot("waveform-sampling-vs-loss")
# +
pred = np.array(model.predict(data), dtype=float)
loss = tools.loss.EMD.numpy(data, pred).flatten()
le_cut = 30
clean_data = data[loss <= le_cut]
clean_loss = loss[loss <= le_cut]
clean_latent = encoder.predict(clean_data)
clean_data.shape[0] / data.shape[0] * 100
# -
clean_model, clean_encoder = AE_models.optimal_simple(3, loss_method=loss_method)
AE_training.train(clean_model, clean_data, epochs=5, batch_size=10, verbose=1)
tools.plot_data.plot_latent_space(clean_encoder, clean_data, log=True)
status_report.save_plot("latent-space-clean-extra-train")
AE_training.plot_results(clean_model, clean_data)
status_report.save_plot("overview-superclean")
plot_loss_waveform_overview(clean_model, clean_data, 50)
status_report.save_plot("waveform-sampling-vs-loss-clean")
status_report.save_model(clean_model, "clean")
# +
pred = np.array(clean_model.predict(clean_data), dtype=float)
clean_loss = tools.loss.EMD.numpy(clean_data, pred).flatten()
le_cut = 12
ultraclean_data = clean_data[clean_loss <= le_cut]
ultraclean_loss = clean_loss[clean_loss <= le_cut]
ultraclean_latent = encoder.predict(ultraclean_data)
ultraclean_integral = ultraclean_data.sum(axis=1)
ultraclean_data.shape[0] / data.shape[0] * 100
# -
ultraclean_model, ultraclean_encoder = AE_models.optimal_simple(
3, loss_method=loss_method
)
AE_training.train(
ultraclean_model, ultraclean_data, epochs=10, batch_size=10, verbose=1
)
ultraclean_model.save("final model.hdf", overwrite=False)
tools.plot_data.plot_latent_space(ultraclean_encoder, ultraclean_data, log=True)
status_report.save_plot("latent-space-ultraclean-extra-train")
AE_training.plot_results(ultraclean_model, ultraclean_data)
status_report.save_plot("overview-ultraclean")
status_report.save_model(ultraclean_model, "final AE ")
status_report.save_model(ultraclean_encoder, "final encoder ")
plot_loss_waveform_overview(ultraclean_model, ultraclean_data, 30)
status_report.save_plot("waveform-sampling-vs-loss-ultraclean")
plot_loss_waveform_overview(
ultraclean_model, AE_training.preprocess(data_loader.load_raw()), 300
)
status_report.save_plot("waveform-sampling-ultraclean-training-all-data-300")
plot_loss_waveform_overview(
ultraclean_model, AE_training.preprocess(data_loader.load_raw()), 40
)
status_report.save_plot("waveform-sampling-ultraclean-training-all-data-40")
plot_loss_waveform_overview(
ultraclean_model, AE_training.preprocess(data_loader.load_raw()), 1000, log=True
)
status_report.save_plot("waveform-sampling-ultraclean-training-all-data-1k-log")
# TODO: output model?