-
Notifications
You must be signed in to change notification settings - Fork 11
/
ding_train.py
294 lines (233 loc) · 11.9 KB
/
ding_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
from torch.utils.tensorboard import SummaryWriter
from base_config import BaseConfigByEpoch
from model_map import get_model_fn
from dataset import create_dataset, load_cuda_data, num_iters_per_epoch
from torch.nn.modules.loss import CrossEntropyLoss
from utils.engine import Engine
from utils.pyt_utils import ensure_dir
from utils.misc import torch_accuracy, AvgMeter
from collections import OrderedDict
import torch
from tqdm import tqdm
import time
from builder import ConvBuilder
from utils.lr_scheduler import get_lr_scheduler
import os
from ding_test import run_eval
TRAIN_SPEED_START = 0.1
TRAIN_SPEED_END = 0.2
COLLECT_TRAIN_LOSS_EPOCHS = 10
# try:
# from apex.parallel.distributed import DistributedDataParallel
# from apex import amp
# except ImportError:
# raise ImportError('Use APEX for multi-precision via apex.amp')
def train_one_step(net, data, label, optimizer, criterion, if_accum_grad = False, gradient_mask_tensor = None):
pred = net(data)
loss = criterion(pred, label)
loss.backward()
if not if_accum_grad:
if gradient_mask_tensor is not None:
for name, param in net.named_parameters():
if name in gradient_mask_tensor:
param.grad = param.grad * gradient_mask_tensor[name]
optimizer.step()
optimizer.zero_grad()
acc, acc5 = torch_accuracy(pred, label, (1,5))
return acc, acc5, loss
def sgd_optimizer(cfg, model, no_l2_keywords, use_nesterov):
params = []
for key, value in model.named_parameters():
if not value.requires_grad:
continue
lr = cfg.base_lr
weight_decay = cfg.weight_decay
if "bias" in key or "bn" in key or "BN" in key:
# lr = cfg.SOLVER.BASE_LR * cfg.SOLVER.BIAS_LR_FACTOR
weight_decay = cfg.weight_decay_bias
print('set weight_decay_bias={} for {}'.format(weight_decay, key))
for kw in no_l2_keywords:
if kw in key:
weight_decay = 0
print('NOTICE! weight decay = 0 for ', key)
if 'bias' in key:
apply_lr = 2 * lr
else:
apply_lr = lr
params += [{"params": [value], "lr": apply_lr, "weight_decay": weight_decay}]
# optimizer = torch.optim.Adam(params, lr)
optimizer = torch.optim.SGD(params, lr, momentum=cfg.momentum, nesterov=use_nesterov)
return optimizer
def get_optimizer(cfg, model, no_l2_keywords, use_nesterov=False):
return sgd_optimizer(cfg, model, no_l2_keywords, use_nesterov=use_nesterov)
def get_criterion(cfg):
return CrossEntropyLoss()
def ding_train(cfg:BaseConfigByEpoch, net=None, train_dataloader=None, val_dataloader=None, show_variables=False, convbuilder=None, beginning_msg=None,
init_hdf5=None, no_l2_keywords=None, gradient_mask=None, use_nesterov=False, tensorflow_style_init=False):
# LOCAL_RANK = 0
#
# num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
# is_distributed = num_gpus > 1
#
# if is_distributed:
# torch.cuda.set_device(LOCAL_RANK)
# torch.distributed.init_process_group(
# backend="nccl", init_method="env://"
# )
# synchronize()
#
# torch.backends.cudnn.benchmark = True
ensure_dir(cfg.output_dir)
ensure_dir(cfg.tb_dir)
with Engine() as engine:
is_main_process = (engine.world_rank == 0) #TODO correct?
logger = engine.setup_log(
name='train', log_dir=cfg.output_dir, file_name='log.txt')
# -- typical model components model, opt, scheduler, dataloder --#
if net is None:
net = get_model_fn(cfg.dataset_name, cfg.network_type)
if convbuilder is None:
convbuilder = ConvBuilder(base_config=cfg)
model = net(cfg, convbuilder).cuda()
if train_dataloader is None:
train_dataloader = create_dataset(cfg.dataset_name, cfg.dataset_subset, cfg.global_batch_size)
if cfg.val_epoch_period > 0 and val_dataloader is None:
val_dataloader = create_dataset(cfg.dataset_name, 'val', batch_size=100) #TODO 100?
print('NOTE: Data prepared')
print('NOTE: We have global_batch_size={} on {} GPUs, the allocated GPU memory is {}'.format(cfg.global_batch_size, torch.cuda.device_count(), torch.cuda.memory_allocated()))
if no_l2_keywords is None:
no_l2_keywords = []
optimizer = get_optimizer(cfg, model, no_l2_keywords=no_l2_keywords, use_nesterov=use_nesterov)
scheduler = get_lr_scheduler(cfg, optimizer)
criterion = get_criterion(cfg).cuda()
# model, optimizer = amp.initialize(model, optimizer, opt_level="O0")
engine.register_state(
scheduler=scheduler, model=model, optimizer=optimizer, cfg=cfg)
if engine.distributed:
print('Distributed training, engine.world_rank={}'.format(engine.world_rank))
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[engine.world_rank],
broadcast_buffers=False, )
# model = DistributedDataParallel(model, delay_allreduce=True)
elif torch.cuda.device_count() > 1:
print('Single machine multiple GPU training')
model = torch.nn.parallel.DataParallel(model)
if tensorflow_style_init:
for k, v in model.named_parameters():
if v.dim() in [2, 4]:
torch.nn.init.xavier_uniform_(v)
print('init {} as xavier_uniform'.format(k))
if 'bias' in k and 'bn' not in k.lower():
torch.nn.init.zeros_(v)
print('init {} as zero'.format(k))
if cfg.init_weights:
engine.load_checkpoint(cfg.init_weights)
if init_hdf5:
engine.load_hdf5(init_hdf5)
if show_variables:
engine.show_variables()
# ------------ do training ---------------------------- #
if beginning_msg:
engine.log(beginning_msg)
logger.info("\n\nStart training with pytorch version {}".format(torch.__version__))
iteration = engine.state.iteration
# done_epochs = iteration // num_train_examples_per_epoch(cfg.dataset_name)
iters_per_epoch = num_iters_per_epoch(cfg)
max_iters = iters_per_epoch * cfg.max_epochs
tb_writer = SummaryWriter(cfg.tb_dir)
tb_tags = ['Top1-Acc', 'Top5-Acc', 'Loss']
model.train()
done_epochs = iteration // iters_per_epoch
engine.save_hdf5(os.path.join(cfg.output_dir, 'init.hdf5'))
recorded_train_time = 0
recorded_train_examples = 0
collected_train_loss_sum = 0
collected_train_loss_count = 0
if gradient_mask is not None:
gradient_mask_tensor = {}
for name, value in gradient_mask.items():
gradient_mask_tensor[name] = torch.Tensor(value).cuda()
else:
gradient_mask_tensor = None
for epoch in range(done_epochs, cfg.max_epochs):
pbar = tqdm(range(iters_per_epoch))
top1 = AvgMeter()
top5 = AvgMeter()
losses = AvgMeter()
discrip_str = 'Epoch-{}/{}'.format(epoch, cfg.max_epochs)
pbar.set_description('Train' + discrip_str)
if cfg.val_epoch_period > 0 and epoch % cfg.val_epoch_period == 0:
model.eval()
val_iters = 500 if cfg.dataset_name == 'imagenet' else 100 # use batch_size=100 for val on ImagenNet and CIFAR
eval_dict, _ = run_eval(val_dataloader, val_iters, model, criterion, discrip_str, dataset_name=cfg.dataset_name)
val_top1_value = eval_dict['top1'].item()
val_top5_value = eval_dict['top5'].item()
val_loss_value = eval_dict['loss'].item()
for tag, value in zip(tb_tags, [val_top1_value, val_top5_value, val_loss_value]):
tb_writer.add_scalars(tag, {'Val': value}, iteration)
engine.log('validate at epoch {}, top1={:.5f}, top5={:.5f}, loss={:.6f}'.format(epoch, val_top1_value, val_top5_value, val_loss_value))
model.train()
for _ in pbar:
start_time = time.time()
data, label = load_cuda_data(train_dataloader, cfg.dataset_name)
data_time = time.time() - start_time
if_accum_grad = ((iteration % cfg.grad_accum_iters) != 0)
train_net_time_start = time.time()
acc, acc5, loss = train_one_step(model, data, label, optimizer, criterion, if_accum_grad, gradient_mask_tensor=gradient_mask_tensor)
train_net_time_end = time.time()
if iteration > TRAIN_SPEED_START * max_iters and iteration < TRAIN_SPEED_END * max_iters:
recorded_train_examples += cfg.global_batch_size
recorded_train_time += train_net_time_end - train_net_time_start
scheduler.step()
if iteration % cfg.tb_iter_period == 0 and is_main_process:
for tag, value in zip(tb_tags, [acc.item(), acc5.item(), loss.item()]):
tb_writer.add_scalars(tag, {'Train': value}, iteration)
top1.update(acc.item())
top5.update(acc5.item())
losses.update(loss.item())
if epoch >= cfg.max_epochs - COLLECT_TRAIN_LOSS_EPOCHS:
collected_train_loss_sum += loss.item()
collected_train_loss_count += 1
pbar_dic = OrderedDict()
pbar_dic['data-time'] = '{:.2f}'.format(data_time)
pbar_dic['cur_iter'] = iteration
pbar_dic['lr'] = scheduler.get_lr()[0]
pbar_dic['top1'] = '{:.5f}'.format(top1.mean)
pbar_dic['top5'] = '{:.5f}'.format(top5.mean)
pbar_dic['loss'] = '{:.5f}'.format(losses.mean)
pbar.set_postfix(pbar_dic)
if iteration >= max_iters or iteration % cfg.ckpt_iter_period == 0:
engine.update_iteration(iteration)
if (not engine.distributed) or (engine.distributed and is_main_process):
engine.save_and_link_checkpoint(cfg.output_dir)
iteration += 1
if iteration >= max_iters:
break
# do something after an epoch?
if iteration >= max_iters:
break
# do something after the training
if recorded_train_time > 0:
exp_per_sec = recorded_train_examples / recorded_train_time
else:
exp_per_sec = 0
engine.log(
'TRAIN speed: from {} to {} iterations, batch_size={}, examples={}, total_net_time={:.4f}, examples/sec={}'
.format(int(TRAIN_SPEED_START * max_iters), int(TRAIN_SPEED_END * max_iters), cfg.global_batch_size,
recorded_train_examples, recorded_train_time, exp_per_sec))
if cfg.save_weights:
engine.save_checkpoint(cfg.save_weights)
print('NOTE: training finished, saved to {}'.format(cfg.save_weights))
engine.save_hdf5(os.path.join(cfg.output_dir, 'finish.hdf5'))
engine.log('TRAIN LOSS collected over last {} epochs: {:.6f}'.format(COLLECT_TRAIN_LOSS_EPOCHS,
collected_train_loss_sum / collected_train_loss_count))
# if engine.world_rank == 0:
# if iteration % 20 == 0 or iteration == max_iter:
# # loss_dict = reducke_loss_dict(loss_dict)
# log_str = 'it:%d, lr:%.1e, ' % (
# iteration, optimizer.param_groups[0]["lr"])
# for key in loss_dict:
# tb_writer.add_scalar(
# key, loss_dict[key].mean(), global_step=iteration)
# log_str += key + ': %.3f, ' % float(loss_dict[key])
# logger.info(log_str)