-
Notifications
You must be signed in to change notification settings - Fork 11
/
ndp_train.py
311 lines (257 loc) · 13.5 KB
/
ndp_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
from torch.utils.tensorboard import SummaryWriter
from base_config import BaseConfigByEpoch
from model_map import get_model_fn
from data.data_factory import create_dataset, load_cuda_data, num_iters_per_epoch
from torch.nn.modules.loss import CrossEntropyLoss
from utils.engine import Engine
from utils.pyt_utils import ensure_dir
from utils.misc import torch_accuracy, AvgMeter
from collections import OrderedDict
import torch
from tqdm import tqdm
import time
from builder import ConvBuilder
from utils.lr_scheduler import get_lr_scheduler
import os
from utils.checkpoint import get_last_checkpoint
from utils.misc import init_as_tensorflow
from ndp_test import val_during_train
TRAIN_SPEED_START = 0.1
TRAIN_SPEED_END = 0.2
COLLECT_TRAIN_LOSS_EPOCHS = 3
TEST_BATCH_SIZE = 100
def train_one_step(net, data, label, optimizer, criterion,
if_accum_grad = False, gradient_mask_tensor = None, lasso_keyword_to_strength=None):
pred = net(data)
loss = criterion(pred, label)
if lasso_keyword_to_strength is not None:
assert len(lasso_keyword_to_strength) == 1 #TODO
for lasso_key, lasso_strength in lasso_keyword_to_strength.items():
for name, param in net.named_parameters():
if lasso_key in name:
if param.ndimension() == 1:
loss += lasso_strength * param.abs().sum()
# print('lasso on vec ', name)
else:
assert param.ndimension() == 4
loss += lasso_strength * ((param ** 2).sum(dim=(1, 2, 3)).sqrt().sum())
# print('lasso on tensor ', name)
loss.backward()
if not if_accum_grad:
if gradient_mask_tensor is not None:
for name, param in net.named_parameters():
if name in gradient_mask_tensor:
param.grad = param.grad * gradient_mask_tensor[name]
optimizer.step()
optimizer.zero_grad()
acc, acc5 = torch_accuracy(pred, label, (1,5))
return acc, acc5, loss
def sgd_optimizer(engine, cfg, model, no_l2_keywords, use_nesterov, keyword_to_lr_mult):
params = []
for key, value in model.named_parameters():
if not value.requires_grad:
continue
lr = cfg.base_lr
weight_decay = cfg.weight_decay
if "bias" in key or "bn" in key or "BN" in key:
# lr = cfg.SOLVER.BASE_LR * cfg.SOLVER.BIAS_LR_FACTOR
weight_decay = cfg.weight_decay_bias
engine.echo('set weight_decay_bias={} for {}'.format(weight_decay, key))
for kw in no_l2_keywords:
if kw in key:
weight_decay = 0
engine.echo('NOTICE! weight decay = 0 for {} because {} in {}'.format(key, kw, key))
break
if 'bias' in key:
apply_lr = 2 * lr
else:
apply_lr = lr
if keyword_to_lr_mult is not None:
for keyword, mult in keyword_to_lr_mult.items():
if keyword in key:
apply_lr *= mult
engine.echo('multiply lr of {} by {}'.format(key, mult))
break
params += [{"params": [value], "lr": apply_lr, "weight_decay": weight_decay}]
# optimizer = torch.optim.Adam(params, lr)
optimizer = torch.optim.SGD(params, lr, momentum=cfg.momentum, nesterov=use_nesterov)
return optimizer
def get_optimizer(engine, cfg, model, no_l2_keywords, use_nesterov=False, keyword_to_lr_mult=None):
return sgd_optimizer(engine, cfg, model, no_l2_keywords, use_nesterov=use_nesterov, keyword_to_lr_mult=keyword_to_lr_mult)
def get_criterion(cfg):
return CrossEntropyLoss()
def train_main(
local_rank,
cfg:BaseConfigByEpoch, net=None, train_dataloader=None, val_dataloader=None, show_variables=False, convbuilder=None,
init_hdf5=None, no_l2_keywords='depth', gradient_mask=None, use_nesterov=False, tensorflow_style_init=False,
load_weights_keyword=None,
keyword_to_lr_mult=None,
auto_continue=False,
lasso_keyword_to_strength=None,
save_hdf5_epochs=10000):
if no_l2_keywords is None:
no_l2_keywords = []
if type(no_l2_keywords) is not list:
no_l2_keywords = [no_l2_keywords]
ensure_dir(cfg.output_dir)
ensure_dir(cfg.tb_dir)
with Engine(local_rank=local_rank) as engine:
engine.setup_log(
name='train', log_dir=cfg.output_dir, file_name='log.txt')
# ----------------------------- build model ------------------------------
if convbuilder is None:
convbuilder = ConvBuilder(base_config=cfg)
if net is None:
net_fn = get_model_fn(cfg.dataset_name, cfg.network_type)
model = net_fn(cfg, convbuilder)
else:
model = net
model = model.cuda()
# ----------------------------- model done ------------------------------
# ---------------------------- prepare data -------------------------
if train_dataloader is None:
train_data = create_dataset(cfg.dataset_name, cfg.dataset_subset,
cfg.global_batch_size, distributed=engine.distributed)
if cfg.val_epoch_period > 0 and val_dataloader is None:
val_data = create_dataset(cfg.dataset_name, 'val',
global_batch_size=100, distributed=False)
engine.echo('NOTE: Data prepared')
engine.echo('NOTE: We have global_batch_size={} on {} GPUs, the allocated GPU memory is {}'.format(cfg.global_batch_size, torch.cuda.device_count(), torch.cuda.memory_allocated()))
# ----------------------------- data done --------------------------------
# ------------------------ parepare optimizer, scheduler, criterion -------
optimizer = get_optimizer(engine, cfg, model,
no_l2_keywords=no_l2_keywords, use_nesterov=use_nesterov, keyword_to_lr_mult=keyword_to_lr_mult)
scheduler = get_lr_scheduler(cfg, optimizer)
criterion = get_criterion(cfg).cuda()
# --------------------------------- done -------------------------------
engine.register_state(
scheduler=scheduler, model=model, optimizer=optimizer)
if engine.distributed:
torch.cuda.set_device(local_rank)
engine.echo('Distributed training, device {}'.format(local_rank))
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[local_rank],
broadcast_buffers=False, )
else:
assert torch.cuda.device_count() == 1
engine.echo('Single GPU training')
if tensorflow_style_init:
init_as_tensorflow(model)
if cfg.init_weights:
engine.load_checkpoint(cfg.init_weights)
if init_hdf5:
engine.load_hdf5(init_hdf5, load_weights_keyword=load_weights_keyword)
if auto_continue:
assert cfg.init_weights is None
engine.load_checkpoint(get_last_checkpoint(cfg.output_dir))
if show_variables:
engine.show_variables()
# ------------ do training ---------------------------- #
engine.log("\n\nStart training with pytorch version {}".format(torch.__version__))
iteration = engine.state.iteration
iters_per_epoch = num_iters_per_epoch(cfg)
max_iters = iters_per_epoch * cfg.max_epochs
tb_writer = SummaryWriter(cfg.tb_dir)
tb_tags = ['Top1-Acc', 'Top5-Acc', 'Loss']
model.train()
done_epochs = iteration // iters_per_epoch
last_epoch_done_iters = iteration % iters_per_epoch
if done_epochs == 0 and last_epoch_done_iters == 0:
engine.save_hdf5(os.path.join(cfg.output_dir, 'init.hdf5'))
recorded_train_time = 0
recorded_train_examples = 0
collected_train_loss_sum = 0
collected_train_loss_count = 0
if gradient_mask is not None:
gradient_mask_tensor = {}
for name, value in gradient_mask.items():
gradient_mask_tensor[name] = torch.Tensor(value).cuda()
else:
gradient_mask_tensor = None
for epoch in range(done_epochs, cfg.max_epochs):
if engine.distributed and hasattr(train_data, 'train_sampler'):
train_data.train_sampler.set_epoch(epoch)
if epoch == done_epochs:
pbar = tqdm(range(iters_per_epoch - last_epoch_done_iters))
else:
pbar = tqdm(range(iters_per_epoch))
if epoch == 0 and local_rank == 0:
val_during_train(epoch=epoch, iteration=iteration, tb_tags=tb_tags, engine=engine, model=model,
val_data=val_data, criterion=criterion, descrip_str='Init',
dataset_name=cfg.dataset_name, test_batch_size=TEST_BATCH_SIZE,
tb_writer=tb_writer)
top1 = AvgMeter()
top5 = AvgMeter()
losses = AvgMeter()
discrip_str = 'Epoch-{}/{}'.format(epoch, cfg.max_epochs)
pbar.set_description('Train' + discrip_str)
for _ in pbar:
start_time = time.time()
data, label = load_cuda_data(train_data, dataset_name=cfg.dataset_name)
# load_cuda_data(train_dataloader, cfg.dataset_name)
data_time = time.time() - start_time
if_accum_grad = ((iteration % cfg.grad_accum_iters) != 0)
train_net_time_start = time.time()
acc, acc5, loss = train_one_step(model, data, label, optimizer, criterion,
if_accum_grad, gradient_mask_tensor=gradient_mask_tensor,
lasso_keyword_to_strength=lasso_keyword_to_strength)
train_net_time_end = time.time()
if iteration > TRAIN_SPEED_START * max_iters and iteration < TRAIN_SPEED_END * max_iters:
recorded_train_examples += cfg.global_batch_size
recorded_train_time += train_net_time_end - train_net_time_start
scheduler.step()
for module in model.modules():
if hasattr(module, 'set_cur_iter'):
module.set_cur_iter(iteration)
if iteration % cfg.tb_iter_period == 0 and engine.world_rank == 0:
for tag, value in zip(tb_tags, [acc.item(), acc5.item(), loss.item()]):
tb_writer.add_scalars(tag, {'Train': value}, iteration)
top1.update(acc.item())
top5.update(acc5.item())
losses.update(loss.item())
if epoch >= cfg.max_epochs - COLLECT_TRAIN_LOSS_EPOCHS:
collected_train_loss_sum += loss.item()
collected_train_loss_count += 1
pbar_dic = OrderedDict()
pbar_dic['data-time'] = '{:.2f}'.format(data_time)
pbar_dic['cur_iter'] = iteration
pbar_dic['lr'] = scheduler.get_lr()[0]
pbar_dic['top1'] = '{:.5f}'.format(top1.mean)
pbar_dic['top5'] = '{:.5f}'.format(top5.mean)
pbar_dic['loss'] = '{:.5f}'.format(losses.mean)
pbar.set_postfix(pbar_dic)
iteration += 1
if iteration >= max_iters or iteration % cfg.ckpt_iter_period == 0:
engine.update_iteration(iteration)
if (not engine.distributed) or (engine.distributed and engine.world_rank == 0):
engine.save_and_link_checkpoint(cfg.output_dir)
if iteration >= max_iters:
break
# do something after an epoch?
engine.update_iteration(iteration)
engine.save_latest_ckpt(cfg.output_dir)
if (epoch + 1) % save_hdf5_epochs == 0:
engine.save_hdf5(os.path.join(cfg.output_dir, 'epoch-{}.hdf5'.format(epoch)))
if local_rank == 0 and \
cfg.val_epoch_period > 0 and (epoch >= cfg.max_epochs - 10 or epoch % cfg.val_epoch_period == 0):
val_during_train(epoch=epoch, iteration=iteration, tb_tags=tb_tags, engine=engine, model=model,
val_data=val_data, criterion=criterion, descrip_str=discrip_str,
dataset_name=cfg.dataset_name, test_batch_size=TEST_BATCH_SIZE, tb_writer=tb_writer)
if iteration >= max_iters:
break
# do something after the training
if recorded_train_time > 0:
exp_per_sec = recorded_train_examples / recorded_train_time
else:
exp_per_sec = 0
engine.log(
'TRAIN speed: from {} to {} iterations, batch_size={}, examples={}, total_net_time={:.4f}, examples/sec={}'
.format(int(TRAIN_SPEED_START * max_iters), int(TRAIN_SPEED_END * max_iters), cfg.global_batch_size,
recorded_train_examples, recorded_train_time, exp_per_sec))
if cfg.save_weights:
engine.save_checkpoint(cfg.save_weights)
print('NOTE: training finished, saved to {}'.format(cfg.save_weights))
engine.save_hdf5(os.path.join(cfg.output_dir, 'finish.hdf5'))
if collected_train_loss_count > 0:
engine.log('TRAIN LOSS collected over last {} epochs: {:.6f}'.format(COLLECT_TRAIN_LOSS_EPOCHS,
collected_train_loss_sum / collected_train_loss_count))