-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathrepmlpnet.py
325 lines (271 loc) · 13.3 KB
/
repmlpnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
# --------------------------------------------------------
# RepMLPNet: Hierarchical Vision MLP with Re-parameterized Locality (https://arxiv.org/abs/2112.11081)
# CVPR 2022
# Github source: https://github.com/DingXiaoH/RepMLP
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import torch.nn.functional as F
import torch.nn as nn
import torch.utils.checkpoint as checkpoint
import torch
def conv_bn(in_channels, out_channels, kernel_size, stride, padding, groups=1):
result = nn.Sequential()
result.add_module('conv', nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, bias=False))
result.add_module('bn', nn.BatchNorm2d(num_features=out_channels))
return result
def conv_bn_relu(in_channels, out_channels, kernel_size, stride, padding, groups=1):
result = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups)
result.add_module('relu', nn.ReLU())
return result
def fuse_bn(conv_or_fc, bn):
std = (bn.running_var + bn.eps).sqrt()
t = bn.weight / std
t = t.reshape(-1, 1, 1, 1)
if len(t) == conv_or_fc.weight.size(0):
return conv_or_fc.weight * t, bn.bias - bn.running_mean * bn.weight / std
else:
repeat_times = conv_or_fc.weight.size(0) // len(t)
repeated = t.repeat_interleave(repeat_times, 0)
return conv_or_fc.weight * repeated, (bn.bias - bn.running_mean * bn.weight / std).repeat_interleave(
repeat_times, 0)
class GlobalPerceptron(nn.Module):
def __init__(self, input_channels, internal_neurons):
super(GlobalPerceptron, self).__init__()
self.fc1 = nn.Conv2d(in_channels=input_channels, out_channels=internal_neurons, kernel_size=1, stride=1, bias=True)
self.fc2 = nn.Conv2d(in_channels=internal_neurons, out_channels=input_channels, kernel_size=1, stride=1, bias=True)
self.input_channels = input_channels
def forward(self, inputs):
x = F.adaptive_avg_pool2d(inputs, output_size=(1, 1))
x = self.fc1(x)
x = F.relu(x, inplace=True)
x = self.fc2(x)
x = F.sigmoid(x)
x = x.view(-1, self.input_channels, 1, 1)
return x
class RepMLPBlock(nn.Module):
def __init__(self, in_channels, out_channels,
h, w,
reparam_conv_k=None,
globalperceptron_reduce=4,
num_sharesets=1,
deploy=False):
super().__init__()
self.C = in_channels
self.O = out_channels
self.S = num_sharesets
self.h, self.w = h, w
self.deploy = deploy
assert in_channels == out_channels
self.gp = GlobalPerceptron(input_channels=in_channels, internal_neurons=in_channels // globalperceptron_reduce)
self.fc3 = nn.Conv2d(self.h * self.w * num_sharesets, self.h * self.w * num_sharesets, 1, 1, 0, bias=deploy, groups=num_sharesets)
if deploy:
self.fc3_bn = nn.Identity()
else:
self.fc3_bn = nn.BatchNorm2d(num_sharesets)
self.reparam_conv_k = reparam_conv_k
if not deploy and reparam_conv_k is not None:
for k in reparam_conv_k:
conv_branch = conv_bn(num_sharesets, num_sharesets, kernel_size=k, stride=1, padding=k//2, groups=num_sharesets)
self.__setattr__('repconv{}'.format(k), conv_branch)
def partition(self, x, h_parts, w_parts):
x = x.reshape(-1, self.C, h_parts, self.h, w_parts, self.w)
x = x.permute(0, 2, 4, 1, 3, 5)
return x
def partition_affine(self, x, h_parts, w_parts):
fc_inputs = x.reshape(-1, self.S * self.h * self.w, 1, 1)
out = self.fc3(fc_inputs)
out = out.reshape(-1, self.S, self.h, self.w)
out = self.fc3_bn(out)
out = out.reshape(-1, h_parts, w_parts, self.S, self.h, self.w)
return out
def forward(self, inputs):
# Global Perceptron
global_vec = self.gp(inputs)
origin_shape = inputs.size()
h_parts = origin_shape[2] // self.h
w_parts = origin_shape[3] // self.w
partitions = self.partition(inputs, h_parts, w_parts)
# Channel Perceptron
fc3_out = self.partition_affine(partitions, h_parts, w_parts)
# Local Perceptron
if self.reparam_conv_k is not None and not self.deploy:
conv_inputs = partitions.reshape(-1, self.S, self.h, self.w)
conv_out = 0
for k in self.reparam_conv_k:
conv_branch = self.__getattr__('repconv{}'.format(k))
conv_out += conv_branch(conv_inputs)
conv_out = conv_out.reshape(-1, h_parts, w_parts, self.S, self.h, self.w)
fc3_out += conv_out
fc3_out = fc3_out.permute(0, 3, 1, 4, 2, 5) # N, O, h_parts, out_h, w_parts, out_w
out = fc3_out.reshape(*origin_shape)
out = out * global_vec
return out
def get_equivalent_fc3(self):
fc_weight, fc_bias = fuse_bn(self.fc3, self.fc3_bn)
if self.reparam_conv_k is not None:
largest_k = max(self.reparam_conv_k)
largest_branch = self.__getattr__('repconv{}'.format(largest_k))
total_kernel, total_bias = fuse_bn(largest_branch.conv, largest_branch.bn)
for k in self.reparam_conv_k:
if k != largest_k:
k_branch = self.__getattr__('repconv{}'.format(k))
kernel, bias = fuse_bn(k_branch.conv, k_branch.bn)
total_kernel += F.pad(kernel, [(largest_k - k) // 2] * 4)
total_bias += bias
rep_weight, rep_bias = self._convert_conv_to_fc(total_kernel, total_bias)
final_fc3_weight = rep_weight.reshape_as(fc_weight) + fc_weight
final_fc3_bias = rep_bias + fc_bias
else:
final_fc3_weight = fc_weight
final_fc3_bias = fc_bias
return final_fc3_weight, final_fc3_bias
def local_inject(self):
self.deploy = True
# Locality Injection
fc3_weight, fc3_bias = self.get_equivalent_fc3()
# Remove Local Perceptron
if self.reparam_conv_k is not None:
for k in self.reparam_conv_k:
self.__delattr__('repconv{}'.format(k))
self.__delattr__('fc3')
self.__delattr__('fc3_bn')
self.fc3 = nn.Conv2d(self.S * self.h * self.w, self.S * self.h * self.w, 1, 1, 0, bias=True, groups=self.S)
self.fc3_bn = nn.Identity()
self.fc3.weight.data = fc3_weight
self.fc3.bias.data = fc3_bias
def _convert_conv_to_fc(self, conv_kernel, conv_bias):
I = torch.eye(self.h * self.w).repeat(1, self.S).reshape(self.h * self.w, self.S, self.h, self.w).to(conv_kernel.device)
fc_k = F.conv2d(I, conv_kernel, padding=(conv_kernel.size(2)//2,conv_kernel.size(3)//2), groups=self.S)
fc_k = fc_k.reshape(self.h * self.w, self.S * self.h * self.w).t()
fc_bias = conv_bias.repeat_interleave(self.h * self.w)
return fc_k, fc_bias
# The common FFN Block used in many Transformer and MLP models.
class FFNBlock(nn.Module):
def __init__(self, in_channels, hidden_channels=None, out_channels=None, act_layer=nn.GELU):
super().__init__()
out_features = out_channels or in_channels
hidden_features = hidden_channels or in_channels
self.ffn_fc1 = conv_bn(in_channels, hidden_features, 1, 1, 0)
self.ffn_fc2 = conv_bn(hidden_features, out_features, 1, 1, 0)
self.act = act_layer()
def forward(self, x):
x = self.ffn_fc1(x)
x = self.act(x)
x = self.ffn_fc2(x)
return x
class RepMLPNetUnit(nn.Module):
def __init__(self, channels, h, w, reparam_conv_k, globalperceptron_reduce, ffn_expand=4,
num_sharesets=1, deploy=False):
super().__init__()
self.repmlp_block = RepMLPBlock(in_channels=channels, out_channels=channels, h=h, w=w,
reparam_conv_k=reparam_conv_k, globalperceptron_reduce=globalperceptron_reduce,
num_sharesets=num_sharesets, deploy=deploy)
self.ffn_block = FFNBlock(channels, channels * ffn_expand)
self.prebn1 = nn.BatchNorm2d(channels)
self.prebn2 = nn.BatchNorm2d(channels)
def forward(self, x):
y = x + self.repmlp_block(self.prebn1(x)) # TODO use droppath?
z = y + self.ffn_block(self.prebn2(y))
return z
class RepMLPNet(nn.Module):
def __init__(self,
in_channels=3, num_class=1000,
patch_size=(4, 4),
num_blocks=(2,2,6,2), channels=(192,384,768,1536),
hs=(64,32,16,8), ws=(64,32,16,8),
sharesets_nums=(4,8,16,32),
reparam_conv_k=(3,),
globalperceptron_reduce=4, use_checkpoint=False,
deploy=False):
super().__init__()
num_stages = len(num_blocks)
assert num_stages == len(channels)
assert num_stages == len(hs)
assert num_stages == len(ws)
assert num_stages == len(sharesets_nums)
self.conv_embedding = conv_bn_relu(in_channels, channels[0], kernel_size=patch_size, stride=patch_size, padding=0)
stages = []
embeds = []
for stage_idx in range(num_stages):
stage_blocks = [RepMLPNetUnit(channels=channels[stage_idx], h=hs[stage_idx], w=ws[stage_idx], reparam_conv_k=reparam_conv_k,
globalperceptron_reduce=globalperceptron_reduce, ffn_expand=4, num_sharesets=sharesets_nums[stage_idx],
deploy=deploy) for _ in range(num_blocks[stage_idx])]
stages.append(nn.ModuleList(stage_blocks))
if stage_idx < num_stages - 1:
embeds.append(conv_bn_relu(in_channels=channels[stage_idx], out_channels=channels[stage_idx + 1], kernel_size=2, stride=2, padding=0))
self.stages = nn.ModuleList(stages)
self.embeds = nn.ModuleList(embeds)
self.head_norm = nn.BatchNorm2d(channels[-1])
self.head = nn.Linear(channels[-1], num_class)
self.use_checkpoint = use_checkpoint
def forward(self, x):
x = self.conv_embedding(x)
for i, stage in enumerate(self.stages):
for block in stage:
if self.use_checkpoint:
x = checkpoint.checkpoint(block, x)
else:
x = block(x)
if i < len(self.stages) - 1:
embed = self.embeds[i]
if self.use_checkpoint:
x = checkpoint.checkpoint(embed, x)
else:
x = embed(x)
x = self.head_norm(x)
x = F.adaptive_avg_pool2d(x, 1)
x = x.view(x.size(0), -1)
x = self.head(x)
return x
def locality_injection(self):
for m in self.modules():
if hasattr(m, 'local_inject'):
m.local_inject()
def create_RepMLPNet_T224(deploy=False):
return RepMLPNet(channels=(64, 128, 256, 512), hs=(56,28,14,7), ws=(56,28,14,7),
num_blocks=(2,2,6,2), reparam_conv_k=(1, 3), sharesets_nums=(1,4,16,128),
deploy=deploy)
def create_RepMLPNet_T256(deploy=False):
return RepMLPNet(channels=(64, 128, 256, 512), hs=(64,32,16,8), ws=(64,32,16,8),
num_blocks=(2,2,6,2), reparam_conv_k=(1, 3), sharesets_nums=(1,4,16,128),
deploy=deploy)
def create_RepMLPNet_B224(deploy=False):
return RepMLPNet(channels=(96, 192, 384, 768), hs=(56,28,14,7), ws=(56,28,14,7),
num_blocks=(2,2,12,2), reparam_conv_k=(1, 3), sharesets_nums=(1,4,32,128),
deploy=deploy)
def create_RepMLPNet_B256(deploy=False):
return RepMLPNet(channels=(96, 192, 384, 768), hs=(64,32,16,8), ws=(64,32,16,8),
num_blocks=(2,2,12,2), reparam_conv_k=(1, 3), sharesets_nums=(1,4,32,128),
deploy=deploy)
def create_RepMLPNet_D256(deploy=False):
return RepMLPNet(channels=(80, 160, 320, 640), hs=(64,32,16,8), ws=(64,32,16,8),
num_blocks=(2,2,18,2), reparam_conv_k=(1, 3), sharesets_nums=(1,4,16,128),
deploy=deploy)
def create_RepMLPNet_L256(deploy=False):
return RepMLPNet(channels=(96, 192, 384, 768), hs=(64,32,16,8), ws=(64,32,16,8),
num_blocks=(2,2,18,2), reparam_conv_k=(1, 3), sharesets_nums=(1,4,32,256),
deploy=deploy)
model_map = {
'RepMLPNet-T256': create_RepMLPNet_T256,
'RepMLPNet-T224': create_RepMLPNet_T224,
'RepMLPNet-B224': create_RepMLPNet_B224,
'RepMLPNet-B256': create_RepMLPNet_B256,
'RepMLPNet-D256': create_RepMLPNet_D256,
'RepMLPNet-L256': create_RepMLPNet_L256,
}
def get_RepMLPNet_model(name, deploy=False):
if name not in model_map:
raise ValueError('Not yet supported. You may add some code to create the model here.')
model = model_map[name](deploy=deploy)
return model
# Verify the equivalency
if __name__ == '__main__':
model = create_RepMLPNet_B224()
model.eval()
x = torch.randn(1, 3, 224, 224)
origin_y = model(x)
model.locality_injection()
print(model)
new_y = model(x)
print((new_y - origin_y).abs().sum())