Pytorch implementation of the STEGO unsupervised semantic segmentation system. [Paper] [Video]
git clone https://github.com/mhamilton723/STEGO.git
cd STEGO
Please visit the Anaconda install page if you do not already have conda installed
conda env create -f environment.yml
conda activate stego
cd src
python download_models.py
First, change the pytorch_data_dir
variable to your
systems pytorch data directory where datasets are stored.
python download_data.py
cd /YOUR/PYTORCH/DATA/DIR
unzip cocostuff.zip
unzip cityscapes.zip
unzip potsdam.zip
unzip potsdamraw.zip
From inside STEGO/src please run the following:
python eval_segmentation.py
From inside STEGO/src please run the following:
python train_segmentation.py
@article{hamilton2022unsupervised,
title={Unsupervised Semantic Segmentation by Distilling Feature Correspondences},
author={Hamilton, Mark and Zhang, Zhoutong and Hariharan, Bharath and Snavely, Noah and Freeman, William T},
journal={arXiv preprint arXiv:2203.08414},
year={2022}
}