This repository contains code for the paper
"Adversarial Generator-Encoder Networks" by Dmitry Ulyanov, Andrea Vedaldi, Victor Lempitsky.
This is how you can access the models used to generate figures in the paper.
-
First install dev version of pyTorch (see manual here) and make sure you have
jupyter notebook
ready. -
Then download the models with the script:
bash download_pretrained.sh
- Run
jupyter notebook
and go throughevaluate.ipynb
.
Here is an example of samples and reconstructions for imagenet
, celeba
and cifar10
datasets generated with evaluate.ipynb
.
Samples | Reconstructions |
---|---|
Samples | Reconstructions |
---|---|
Samples | Reconstructions |
---|---|
Use age.py
script to train a model. Here are the most important parameters:
--dataset
: one of [celeba, cifar10, imagenet, svhn, mnist]--dataroot
: for datasets included intorchvision
it is a directory where everything will be downloaded to; for imagenet, celeba datasets it is a path to a directory with folderstrain
andval
inside.--image_size
:--save_dir
: path to a folder, where checkpoints will be stored--nz
: dimensionality of latent space-- batch_size
: Batch size. Default 64.--netG
:.py
file with generator definition. Searched inmodels
directory--netE
:.py
file with generator definition. Searched inmodels
directory--netG_chp
: path to a generator checkpoint to load from--netE_chp
: path to an encoder checkpoint to load from--nepoch
: number of epoch to run--start_epoch
: epoch number to start from. Useful for finetuning.--e_updates
: Update plan for encoder.<num steps>;KL_fake:<weight>,KL_real:<weight>,match_z:<weight>,match_x:<weight>
.--g_updates
: Update plan for generator.<num steps>;KL_fake:<weight>,match_z:<weight>,match_x:<weight>
.
And misc arguments:
--workers
: number of dataloader workers.--ngf
: controlles number of channels in generator--ndf
: controlles number of channels in encoder--beta1
: parameter for ADAM optimizer--cpu
: do not use GPU--criterion
: Parametricparam
or non-parametricnonparam
way to compute KL. Parametric fits Gaussian into data, non-parametric is based on nearest neighbors. Default:param
.--KL
: What KL to compute:qp
orpq
. Default isqp
.--noise
:sphere
for uniform on sphere orgaussian
. Defaultsphere
.--match_z
: loss to use as reconstruction loss in latent space.L1|L2|cos
. Defaultcos
.--match_x
: loss to use as reconstruction loss in data space.L1|L2|cos
. DefaultL1
.--drop_lr
: eachdrop_lr
epochs a learning rate is dropped.--save_every
: controls how often intermediate results are stored. Default50
.--manual_seed
: random seed. Default123
.
Here is cmd
you can start with:
Let data_root
to be a directory with two folders train
, val
, each with the images for corresponding split.
python age.py --dataset celeba --dataroot <data_root> --image_size 64 --save_dir <save_dir> --lr 0.0002 --nz 64 --batch_size 64 --netG dcgan64px --netE dcgan64px --nepoch 5 --drop_lr 5 --e_updates '1;KL_fake:1,KL_real:1,match_z:0,match_x:10' --g_updates '3;KL_fake:1,match_z:1000,match_x:0'
It is beneficial to finetune the model with larger batch_size
and stronger matching weight then:
python age.py --dataset celeba --dataroot <data_root> --image_size 64 --save_dir <save_dir> --start_epoch 5 --lr 0.0002 --nz 64 --batch_size 256 --netG dcgan64px --netE dcgan64px --nepoch 6 --drop_lr 5 --e_updates '1;KL_fake:1,KL_real:1,match_z:0,match_x:15' --g_updates '3;KL_fake:1,match_z:1000,match_x:0' --netE_chp <save_dir>/netE_epoch_5.pth --netG_chp <save_dir>/netG_epoch_5.pth
python age.py --dataset imagenet --dataroot /path/to/imagenet_dir/ --save_dir <save_dir> --image_size 32 --save_dir ${pdir} --lr 0.0002 --nz 128 --netG dcgan32px --netE dcgan32px --nepoch 6 --drop_lr 3 --e_updates '1;KL_fake:1,KL_real:1,match_z:0,match_x:10' --g_updates '2;KL_fake:1,match_z:2000,match_x:0' --workers 12
It can be beneficial to switch to 256
batch size after several epochs.
python age.py --dataset cifar10 --image_size 32 --save_dir <save_dir> --lr 0.0002 --nz 128 --netG dcgan32px --netE dcgan32px --nepoch 150 --drop_lr 40 --e_updates '1;KL_fake:1,KL_real:1,match_z:0,match_x:10' --g_updates '2;KL_fake:1,match_z:1000,match_x:0'
Tested with python 2.7.
Implementation is based on pyTorch DCGAN code.
If you found this code useful please cite our paper
@article{ulyanov2017age, title={Adversarial Generator-Encoder Networks}, author={Ulyanov, Dmitry and Vedaldi, Andrea and Lempitsky, Victor}, journal={arXiv preprint arXiv:1704.02304}, year={2017} }