forked from tidyverse/ggplot2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcoord-transform.r
192 lines (171 loc) · 5.89 KB
/
coord-transform.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
#' Transformed Cartesian coordinate system
#'
#' `coord_trans` is different to scale transformations in that it occurs after
#' statistical transformation and will affect the visual appearance of geoms - there is
#' no guarantee that straight lines will continue to be straight.
#'
#' Transformations only work with continuous values: see
#' [scales::trans_new()] for list of transformations, and instructions
#' on how to create your own.
#'
#' @param x,y transformers for x and y axes
#' @param xtrans,ytrans Deprecated; use `x` and `y` instead.
#' @param limx,limy limits for x and y axes. (Named so for backward
#' compatibility)
#' @export
#' @examples
#' \donttest{
#' # See ?geom_boxplot for other examples
#'
#' # Three ways of doing transformation in ggplot:
#' # * by transforming the data
#' ggplot(diamonds, aes(log10(carat), log10(price))) +
#' geom_point()
#' # * by transforming the scales
#' ggplot(diamonds, aes(carat, price)) +
#' geom_point() +
#' scale_x_log10() +
#' scale_y_log10()
#' # * by transforming the coordinate system:
#' ggplot(diamonds, aes(carat, price)) +
#' geom_point() +
#' coord_trans(x = "log10", y = "log10")
#'
#' # The difference between transforming the scales and
#' # transforming the coordinate system is that scale
#' # transformation occurs BEFORE statistics, and coordinate
#' # transformation afterwards. Coordinate transformation also
#' # changes the shape of geoms:
#'
#' d <- subset(diamonds, carat > 0.5)
#'
#' ggplot(d, aes(carat, price)) +
#' geom_point() +
#' geom_smooth(method = "lm") +
#' scale_x_log10() +
#' scale_y_log10()
#'
#' ggplot(d, aes(carat, price)) +
#' geom_point() +
#' geom_smooth(method = "lm") +
#' coord_trans(x = "log10", y = "log10")
#'
#' # Here I used a subset of diamonds so that the smoothed line didn't
#' # drop below zero, which obviously causes problems on the log-transformed
#' # scale
#'
#' # With a combination of scale and coordinate transformation, it's
#' # possible to do back-transformations:
#' ggplot(diamonds, aes(carat, price)) +
#' geom_point() +
#' geom_smooth(method = "lm") +
#' scale_x_log10() +
#' scale_y_log10() +
#' coord_trans(x = scales::exp_trans(10), y = scales::exp_trans(10))
#'
#' # cf.
#' ggplot(diamonds, aes(carat, price)) +
#' geom_point() +
#' geom_smooth(method = "lm")
#'
#' # Also works with discrete scales
#' df <- data.frame(a = abs(rnorm(26)),letters)
#' plot <- ggplot(df,aes(a,letters)) + geom_point()
#'
#' plot + coord_trans(x = "log10")
#' plot + coord_trans(x = "sqrt")
#' }
coord_trans <- function(x = "identity", y = "identity", limx = NULL, limy = NULL,
xtrans, ytrans)
{
if (!missing(xtrans)) {
gg_dep("1.0.1", "`xtrans` arguments is deprecated; please use `x` instead.")
x <- xtrans
}
if (!missing(ytrans)) {
gg_dep("1.0.1", "`ytrans` arguments is deprecated; please use `y` instead.")
y <- ytrans
}
# @kohske
# Now limits are implemented.
# But for backward compatibility, xlim -> limx, ylim -> ylim
# Because there are many examples such as
# > coord_trans(x = "log10", y = "log10")
# Maybe this is changed.
if (is.character(x)) x <- as.trans(x)
if (is.character(y)) y <- as.trans(y)
ggproto(NULL, CoordTrans,
trans = list(x = x, y = y),
limits = list(x = limx, y = limy)
)
}
#' @rdname ggplot2-ggproto
#' @format NULL
#' @usage NULL
#' @export
CoordTrans <- ggproto("CoordTrans", Coord,
distance = function(self, x, y, panel_params) {
max_dist <- dist_euclidean(panel_params$x.range, panel_params$y.range)
dist_euclidean(self$trans$x$transform(x), self$trans$y$transform(y)) / max_dist
},
transform = function(self, data, panel_params) {
trans_x <- function(data) transform_value(self$trans$x, data, panel_params$x.range)
trans_y <- function(data) transform_value(self$trans$y, data, panel_params$y.range)
new_data <- transform_position(data, trans_x, trans_y)
warn_new_infinites(data$x, new_data$x, "x")
warn_new_infinites(data$y, new_data$y, "y")
transform_position(new_data, squish_infinite, squish_infinite)
},
setup_panel_params = function(self, scale_x, scale_y, params = list()) {
c(
train_trans(scale_x, self$limits$x, self$trans$x, "x"),
train_trans(scale_y, self$limits$y, self$trans$y, "y")
)
}
)
transform_value <- function(trans, value, range) {
if (is.null(value))
return(value)
rescale(trans$transform(value), 0:1, range)
}
train_trans <- function(scale, limits, trans, name) {
# first, calculate the range that is the numerical limits in data space
# expand defined by scale OR coord
# @kohske
# Expansion of data range sometimes go beyond domain,
# so in trans, expansion takes place at the final stage.
if (is.null(limits)) {
range <- scale$dimension()
} else {
range <- range(scale$transform(limits))
}
# breaks on data space
out <- scale$break_info(range)
# trans'd range
out$range <- trans$transform(out$range)
# expansion if limits are not specified
if (is.null(limits)) {
expand <- expand_default(scale)
out$range <- expand_range(out$range, expand[1], expand[2])
}
# major and minor values in plot space
out$major_source <- transform_value(trans, out$major_source, out$range)
out$minor_source <- transform_value(trans, out$minor_source, out$range)
out <- list(
range = out$range, labels = out$labels,
major = out$major_source, minor = out$minor_source
)
names(out) <- paste(name, names(out), sep = ".")
out
}
#' Generate warning when finite values are transformed into infinite values
#'
#' @param old_values A vector of pre-transformation values.
#' @param new_values A vector of post-transformation values.
#' @param axis Which axis the values originate from (e.g. x, y).
#' @noRd
warn_new_infinites <- function(old_values, new_values, axis) {
if (any(is.finite(old_values) & !is.finite(new_values))) {
warning("Transformation introduced infinite values in ", axis, "-axis", call. = FALSE)
}
}