forked from tidyverse/ggplot2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextending-ggplot2.Rmd
977 lines (778 loc) · 40.6 KB
/
extending-ggplot2.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
---
title: "Extending ggplot2"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{Extending ggplot2}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r, include = FALSE}
knitr::opts_chunk$set(collapse = TRUE, comment = "#>", fig.width = 7, fig.height = 7, fig.align = "center")
library(ggplot2)
```
This vignette documents the official extension mechanism provided in ggplot2 2.0.0. This vignette is a high-level adjunct to the low-level details found in `?Stat`, `?Geom` and `?theme`. You'll learn how to extend ggplot2 by creating a new stat, geom, or theme.
As you read this document, you'll see many things that will make you scratch your head and wonder why on earth is it designed this way? Mostly it's historical accident - I wasn't a terribly good R programmer when I started writing ggplot2 and I made a lot of questionable decisions. We cleaned up as many of those issues as possible in the 2.0.0 release, but some fixes simply weren't worth the effort.
## ggproto
All ggplot2 objects are built using the ggproto system of object oriented programming. This OO system is used only in one place: ggplot2. This is mostly historical accident: ggplot2 started off using [proto]( https://cran.r-project.org/package=proto) because I needed mutable objects. This was well before the creation of (the briefly lived) [mutatr](http://vita.had.co.nz/papers/mutatr.html), reference classes and R6: proto was the only game in town.
But why ggproto? Well when we turned to add an official extension mechanism to ggplot2, we found a major problem that caused problems when proto objects were extended in a different package (methods were evaluated in ggplot2, not the package where the extension was added). We tried converting to R6, but it was a poor fit for the needs of ggplot2. We could've modified proto, but that would've first involved understanding exactly how proto worked, and secondly making sure that the changes didn't affect other users of proto.
It's strange to say, but this is a case where inventing a new OO system was actually the right answer to the problem! Fortunately Winston is now very good at creating OO systems, so it only took him a day to come up with ggproto: it maintains all the features of proto that ggplot2 needs, while allowing cross package inheritance to work.
Here's a quick demo of ggproto in action:
```{r ggproto-intro}
A <- ggproto("A", NULL,
x = 1,
inc = function(self) {
self$x <- self$x + 1
}
)
A$x
A$inc()
A$x
A$inc()
A$inc()
A$x
```
The majority of ggplot2 classes are immutable and static: the methods neither use nor modify state in the class. They're mostly used as a convenient way of bundling related methods together.
To create a new geom or stat, you will just create a new ggproto that inherits from `Stat`, `Geom` and override the methods described below.
## Creating a new stat
### The simplest stat
We'll start by creating a very simple stat: one that gives the convex hull (the _c_ hull) of a set of points. First we create a new ggproto object that inherits from `Stat`:
```{r chull}
StatChull <- ggproto("StatChull", Stat,
compute_group = function(data, scales) {
data[chull(data$x, data$y), , drop = FALSE]
},
required_aes = c("x", "y")
)
```
The two most important components are the `compute_group()` method (which does the computation), and the `required_aes` field, which lists which aesthetics must be present in order to for the stat to work.
Next we write a layer function. Unfortunately, due to an early design mistake I called these either `stat_()` or `geom_()`. A better decision would have been to call them `layer_()` functions: that's a more accurate description because every layer involves a stat _and_ a geom.
All layer functions follow the same form - you specify defaults in the function arguments and then call the `layer()` function, sending `...` into the `params` argument. The arguments in `...` will either be arguments for the geom (if you're making a stat wrapper), arguments for the stat (if you're making a geom wrapper), or aesthetics to be set. `layer()` takes care of teasing the different parameters apart and making sure they're stored in the right place:
```{r}
stat_chull <- function(mapping = NULL, data = NULL, geom = "polygon",
position = "identity", na.rm = FALSE, show.legend = NA,
inherit.aes = TRUE, ...) {
layer(
stat = StatChull, data = data, mapping = mapping, geom = geom,
position = position, show.legend = show.legend, inherit.aes = inherit.aes,
params = list(na.rm = na.rm, ...)
)
}
```
(Note that if you're writing this in your own package, you'll either need to call `ggplot2::layer()` explicitly, or import the `layer()` function into your package namespace.)
Once we have a layer function we can try our new stat:
```{r}
ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_chull(fill = NA, colour = "black")
```
(We'll see later how to change the defaults of the geom so that you don't need to specify `fill = NA` every time.)
Once we've written this basic object, ggplot2 gives a lot for free. For example, ggplot2 automatically preserves aesthetics that are constant within each group:
```{r}
ggplot(mpg, aes(displ, hwy, colour = drv)) +
geom_point() +
stat_chull(fill = NA)
```
We can also override the default geom to display the convex hull in a different way:
```{r}
ggplot(mpg, aes(displ, hwy)) +
stat_chull(geom = "point", size = 4, colour = "red") +
geom_point()
```
### Stat parameters
A more complex stat will do some computation. Let's implement a simple version of `geom_smooth()` that adds a line of best fit to a plot. We create a `StatLm` that inherits from `Stat` and a layer function, `stat_lm()`:
```{r}
StatLm <- ggproto("StatLm", Stat,
required_aes = c("x", "y"),
compute_group = function(data, scales) {
rng <- range(data$x, na.rm = TRUE)
grid <- data.frame(x = rng)
mod <- lm(y ~ x, data = data)
grid$y <- predict(mod, newdata = grid)
grid
}
)
stat_lm <- function(mapping = NULL, data = NULL, geom = "line",
position = "identity", na.rm = FALSE, show.legend = NA,
inherit.aes = TRUE, ...) {
layer(
stat = StatLm, data = data, mapping = mapping, geom = geom,
position = position, show.legend = show.legend, inherit.aes = inherit.aes,
params = list(na.rm = na.rm, ...)
)
}
ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_lm()
```
`StatLm` is inflexible because it has no parameters. We might want to allow the user to control the model formula and the number of points used to generate the grid. To do so, we add arguments to the `compute_group()` method and our wrapper function:
```{r}
StatLm <- ggproto("StatLm", Stat,
required_aes = c("x", "y"),
compute_group = function(data, scales, params, n = 100, formula = y ~ x) {
rng <- range(data$x, na.rm = TRUE)
grid <- data.frame(x = seq(rng[1], rng[2], length = n))
mod <- lm(formula, data = data)
grid$y <- predict(mod, newdata = grid)
grid
}
)
stat_lm <- function(mapping = NULL, data = NULL, geom = "line",
position = "identity", na.rm = FALSE, show.legend = NA,
inherit.aes = TRUE, n = 50, formula = y ~ x,
...) {
layer(
stat = StatLm, data = data, mapping = mapping, geom = geom,
position = position, show.legend = show.legend, inherit.aes = inherit.aes,
params = list(n = n, formula = formula, na.rm = na.rm, ...)
)
}
ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_lm(formula = y ~ poly(x, 10)) +
stat_lm(formula = y ~ poly(x, 10), geom = "point", colour = "red", n = 20)
```
Note that we don't _have_ to explicitly include the new parameters in the arguments for the layer, `...` will get passed to the right place anyway. But you'll need to document them somewhere so the user knows about them. Here's a brief example. Note `@inheritParams ggplot2::stat_identity`: that will automatically inherit documentation for all the parameters also defined for `stat_identity()`.
```{r}
#' @export
#' @inheritParams ggplot2::stat_identity
#' @param formula The modelling formula passed to \code{lm}. Should only
#' involve \code{y} and \code{x}
#' @param n Number of points used for interpolation.
stat_lm <- function(mapping = NULL, data = NULL, geom = "line",
position = "identity", na.rm = FALSE, show.legend = NA,
inherit.aes = TRUE, n = 50, formula = y ~ x,
...) {
layer(
stat = StatLm, data = data, mapping = mapping, geom = geom,
position = position, show.legend = show.legend, inherit.aes = inherit.aes,
params = list(n = n, formula = formula, na.rm = na.rm, ...)
)
}
```
`stat_lm()` must be exported if you want other people to use it. You could also consider exporting `StatLm` if you want people to extend the underlying object; this should be done with care.
### Picking defaults
Sometimes you have calculations that should be performed once for the complete dataset, not once for each group. This is useful for picking sensible default values. For example, if we want to do a density estimate, it's reasonable to pick one bandwidth for the whole plot. The following Stat creates a variation of the `stat_density()` that picks one bandwidth for all groups by choosing the mean of the "best" bandwidth for each group (I have no theoretical justification for this, but it doesn't seem unreasonable).
To do this we override the `setup_params()` method. It's passed the data and a list of params, and returns an updated list.
```{r}
StatDensityCommon <- ggproto("StatDensityCommon", Stat,
required_aes = "x",
setup_params = function(data, params) {
if (!is.null(params$bandwidth))
return(params)
xs <- split(data$x, data$group)
bws <- vapply(xs, bw.nrd0, numeric(1))
bw <- mean(bws)
message("Picking bandwidth of ", signif(bw, 3))
params$bandwidth <- bw
params
},
compute_group = function(data, scales, bandwidth = 1) {
d <- density(data$x, bw = bandwidth)
data.frame(x = d$x, y = d$y)
}
)
stat_density_common <- function(mapping = NULL, data = NULL, geom = "line",
position = "identity", na.rm = FALSE, show.legend = NA,
inherit.aes = TRUE, bandwidth = NULL,
...) {
layer(
stat = StatDensityCommon, data = data, mapping = mapping, geom = geom,
position = position, show.legend = show.legend, inherit.aes = inherit.aes,
params = list(bandwidth = bandwidth, na.rm = na.rm, ...)
)
}
ggplot(mpg, aes(displ, colour = drv)) +
stat_density_common()
ggplot(mpg, aes(displ, colour = drv)) +
stat_density_common(bandwidth = 0.5)
```
I recommend using `NULL` as a default value. If you pick important parameters automatically, it's a good idea to `message()` to the user (and when printing a floating point parameter, using `signif()` to show only a few significant digits).
### Variable names and default aesthetics
This stat illustrates another important point. If we want to make this stat usable with other geoms, we should return a variable called `density` instead of `y`. Then we can set up the `default_aes` to automatically map `density` to `y`, which allows the user to override it to use with different geoms:
```{r}
StatDensityCommon <- ggproto("StatDensity2", Stat,
required_aes = "x",
default_aes = aes(y = calc(density)),
compute_group = function(data, scales, bandwidth = 1) {
d <- density(data$x, bw = bandwidth)
data.frame(x = d$x, density = d$y)
}
)
ggplot(mpg, aes(displ, drv, colour = calc(density))) +
stat_density_common(bandwidth = 1, geom = "point")
```
However, using this stat with the area geom doesn't work quite right. The areas don't stack on top of each other:
```{r}
ggplot(mpg, aes(displ, fill = drv)) +
stat_density_common(bandwidth = 1, geom = "area", position = "stack")
```
This is because each density is computed independently, and the estimated `x`s don't line up. We can resolve that issue by computing the range of the data once in `setup_params()`.
```{r}
StatDensityCommon <- ggproto("StatDensityCommon", Stat,
required_aes = "x",
default_aes = aes(y = calc(density)),
setup_params = function(data, params) {
min <- min(data$x) - 3 * params$bandwidth
max <- max(data$x) + 3 * params$bandwidth
list(
bandwidth = params$bandwidth,
min = min,
max = max,
na.rm = params$na.rm
)
},
compute_group = function(data, scales, min, max, bandwidth = 1) {
d <- density(data$x, bw = bandwidth, from = min, to = max)
data.frame(x = d$x, density = d$y)
}
)
ggplot(mpg, aes(displ, fill = drv)) +
stat_density_common(bandwidth = 1, geom = "area", position = "stack")
ggplot(mpg, aes(displ, drv, fill = calc(density))) +
stat_density_common(bandwidth = 1, geom = "raster")
```
### Exercises
1. Extend `stat_chull` to compute the alpha hull, as from the
[alphahull](https://cran.r-project.org/package=alphahull) package. Your
new stat should take an `alpha` argument.
1. Modify the final version of `StatDensityCommon` to allow the user to
specify the `min` and `max` parameters. You'll need to modify both the
layer function and the `compute_group()` method.
Note: be careful when adding parameters to a layer function. The following
names *col*, *color*, *pch*, *cex*, *lty*, *lwd*, *srt*, *adj*, *bg*, *fg*,
*min*, and *max* are intentionally renamed to accomodate base graphical
parameter names. For example, a value passed as *min* to a layer appears as
*ymin* in the `setup_params` list of params. It is recommended you avoid
using these names for layer parameters.
1. Compare and contrast `StatLm` to `ggplot2::StatSmooth`. What key
differences make `StatSmooth` more complex than `StatLm`?
## Creating a new geom
It's harder to create a new geom than a new stat because you also need to know some grid. ggplot2 is built on top of grid, so you'll need to know the basics of drawing with grid. If you're serious about adding a new geom, I'd recommend buying [R graphics](http://amzn.com/B00I60M26G) by Paul Murrell. It tells you everything you need to know about drawing with grid.
### A simple geom
It's easiest to start with a simple example. The code below is a simplified version of `geom_point()`:
```{r GeomSimplePoint}
GeomSimplePoint <- ggproto("GeomSimplePoint", Geom,
required_aes = c("x", "y"),
default_aes = aes(shape = 19, colour = "black"),
draw_key = draw_key_point,
draw_panel = function(data, panel_params, coord) {
coords <- coord$transform(data, panel_params)
grid::pointsGrob(
coords$x, coords$y,
pch = coords$shape,
gp = grid::gpar(col = coords$colour)
)
}
)
geom_simple_point <- function(mapping = NULL, data = NULL, stat = "identity",
position = "identity", na.rm = FALSE, show.legend = NA,
inherit.aes = TRUE, ...) {
layer(
geom = GeomSimplePoint, mapping = mapping, data = data, stat = stat,
position = position, show.legend = show.legend, inherit.aes = inherit.aes,
params = list(na.rm = na.rm, ...)
)
}
ggplot(mpg, aes(displ, hwy)) +
geom_simple_point()
```
This is very similar to defining a new stat. You always need to provide fields/methods for the four pieces shown above:
* `required_aes` is a character vector which lists all the aesthetics that
the user must provide.
* `default_aes` lists the aesthetics that have default values.
* `draw_key` provides the function used to draw the key in the legend.
You can see a list of all the build in key functions in `?draw_key`
* `draw_panel()` is where the magic happens. This function takes three
arguments and returns a grid grob. It is called once for each panel.
It's the most complicated part and is described in more detail below.
`draw_panel()` has three arguments:
* `data`: a data frame with one column for each aesthetic.
* `panel_params`: a list of per-panel parameters generated by the coord.
You should consider this an opaque data structure: don't look inside
it, just pass along to `coord` methods.
* `coord`: an object describing the coordinate system.
You need to use `panel_params` and `coord` together to transform the data `coords <- coord$transform(data, panel_params)`. This creates a data frame where position variables are scaled to the range 0--1. You then take this data and call a grid grob function. (Transforming for non-Cartesian coordinate systems is quite complex - you're best off transforming your data to the form accepted by an existing ggplot2 geom and passing it.)
### Collective geoms
Overriding `draw_panel()` is most appropriate if there is one graphic element per row. In other cases, you want graphic element per group. For example, take polygons: each row gives one vertex of a polygon. In this case, you should instead override `draw_group()`.
The following code makes a simplified version of `GeomPolygon`:
```{r}
GeomSimplePolygon <- ggproto("GeomPolygon", Geom,
required_aes = c("x", "y"),
default_aes = aes(
colour = NA, fill = "grey20", size = 0.5,
linetype = 1, alpha = 1
),
draw_key = draw_key_polygon,
draw_group = function(data, panel_params, coord) {
n <- nrow(data)
if (n <= 2) return(grid::nullGrob())
coords <- coord$transform(data, panel_params)
# A polygon can only have a single colour, fill, etc, so take from first row
first_row <- coords[1, , drop = FALSE]
grid::polygonGrob(
coords$x, coords$y,
default.units = "native",
gp = grid::gpar(
col = first_row$colour,
fill = scales::alpha(first_row$fill, first_row$alpha),
lwd = first_row$size * .pt,
lty = first_row$linetype
)
)
}
)
geom_simple_polygon <- function(mapping = NULL, data = NULL, stat = "chull",
position = "identity", na.rm = FALSE, show.legend = NA,
inherit.aes = TRUE, ...) {
layer(
geom = GeomSimplePolygon, mapping = mapping, data = data, stat = stat,
position = position, show.legend = show.legend, inherit.aes = inherit.aes,
params = list(na.rm = na.rm, ...)
)
}
ggplot(mpg, aes(displ, hwy)) +
geom_point() +
geom_simple_polygon(aes(colour = class), fill = NA)
```
There are a few things to note here:
* We override `draw_group()` instead of `draw_panel()` because we want
one polygon per group, not one polygon per row.
* If the data contains two or fewer points, there's no point trying to draw
a polygon, so we return a `nullGrob()`. This is the graphical equivalent
of `NULL`: it's a grob that doesn't draw anything and doesn't take up
any space.
* Note the units: `x` and `y` should always be drawn in "native" units.
(The default units for `pointGrob()` is a native, so we didn't need to
change it there). `lwd` is measured in points, but ggplot2 uses mm,
so we need to multiply it by the adjustment factor `.pt`.
You might want to compare this to the real `GeomPolygon`. You'll see it overrides `draw_panel()` because it uses some tricks to make `polygonGrob()` produce multiple polygons in one call. This is considerably more complicated, but gives better performance.
### Inheriting from an existing Geom
Sometimes you just want to make a small modification to an existing geom. In this case, rather than inheriting from `Geom` you can inherit from an existing subclass. For example, we might want to change the defaults for `GeomPolygon` to work better with `StatChull`:
```{r}
GeomPolygonHollow <- ggproto("GeomPolygonHollow", GeomPolygon,
default_aes = aes(colour = "black", fill = NA, size = 0.5, linetype = 1,
alpha = NA)
)
geom_chull <- function(mapping = NULL, data = NULL,
position = "identity", na.rm = FALSE, show.legend = NA,
inherit.aes = TRUE, ...) {
layer(
stat = StatChull, geom = GeomPolygonHollow, data = data, mapping = mapping,
position = position, show.legend = show.legend, inherit.aes = inherit.aes,
params = list(na.rm = na.rm, ...)
)
}
ggplot(mpg, aes(displ, hwy)) +
geom_point() +
geom_chull()
```
This doesn't allow you to use different geoms with the stat, but that seems appropriate here since the convex hull is primarily a polygonal feature.
### Exercises
1. Compare and contrast `GeomPoint` with `GeomSimplePoint`.
1. Compare and contract `GeomPolygon` with `GeomSimplePolygon`.
## Creating your own theme
If you're going to create your own complete theme, there are a few things you need to know:
* Overriding existing elements, rather than modifying them
* The four global elements that affect (almost) every other theme element
* Complete vs. incomplete elements
### Overriding elements
By default, when you add a new theme element, it inherits values from the existing theme. For example, the following code sets the key colour to red, but it inherits the existing fill colour:
```{r}
theme_grey()$legend.key
new_theme <- theme_grey() + theme(legend.key = element_rect(colour = "red"))
new_theme$legend.key
```
To override it completely, use `%+replace%` instead of `+`:
```{r}
new_theme <- theme_grey() %+replace% theme(legend.key = element_rect(colour = "red"))
new_theme$legend.key
```
### Global elements
There are four elements that affect the global appearance of the plot:
Element | Theme function | Description
-------------|-------------------|------------------------
line | `element_line()` | all line elements
rect | `element_rect()` | all rectangular elements
text | `element_text()` | all text
title | `element_text()` | all text in title elements (plot, axes & legend)
These set default properties that are inherited by more specific settings. These are most useful for setting an overall "background" colour and overall font settings (e.g. family and size).
```{r axis-line-ex}
df <- data.frame(x = 1:3, y = 1:3)
base <- ggplot(df, aes(x, y)) +
geom_point() +
theme_minimal()
base
base + theme(text = element_text(colour = "red"))
```
You should generally start creating a theme by modifying these values.
### Complete vs incomplete
It is useful to understand the difference between complete and incomplete theme objects. A *complete* theme object is one produced by calling a theme function with the attribute `complete = TRUE`.
Theme functions `theme_grey()` and `theme_bw()` are examples of complete theme functions. Calls to `theme()` produce *incomplete* theme objects, since they represent (local) modifications to a theme object rather than returning a complete theme object per se. When adding an incomplete theme to a complete one, the result is a complete theme.
Complete and incomplete themes behave somewhat differently when added to a ggplot object:
* Adding an incomplete theme augments the current theme object, replacing only
those properties of elements defined in the call to `theme()`.
* Adding a complete theme wipes away the existing theme and applies the new theme.
## Creating a new facetting
One of the more daunting exercises in ggplot2 extensions is to create a new facetting system. The reason for this is that when creating new facettings you take on the responsibility of how (almost) everything is drawn on the screen, and many do not have experience with directly using [gtable](https://cran.r-project.org/package=gtable) and [grid](https://cran.r-project.org/package=grid) upon which the ggplot2 rendering is built. If you decide to venture into facetting extensions, it is highly recommended to gain proficiency with the above-mentioned packages.
The `Facet` class in ggplot2 is very powerful as it takes on responsibility of a wide range of tasks. The main tasks of a `Facet` object are:
* Define a layout; that is, a partitioning of the data into different plot areas (panels) as well as which panels share position scales.
* Map plot data into the correct panels, potentially duplicating data if it should exist in multiple panels (e.g. margins in `facet_grid()`).
* Assemble all panels into a final gtable, adding axes, strips and decorations in the process.
Apart from these three tasks, for which functionality must be implemented, there are a couple of additional extension points where sensible defaults have been provided. These can generally be ignored, but adventurous developers can override them for even more control:
* Initialization and training of positional scales for each panel.
* Decoration in front of and behind each panel.
* Drawing of axis labels
To show how a new facetting class is created we will start simple and go through each of the required methods in turn to build up `facet_duplicate()` that simply duplicate our plot into two panels. After this we will tinker with it a bit to show some of the more powerful possibilities.
### Creating a layout specification
A layout in the context of facets is a `data.frame` that defines a mapping between data and the panels it should reside in as well as which positional scales should be used. The output should at least contain the columns `PANEL`, `SCALE_X`, and `SCALE_Y`, but will often contain more to help assign data to the correct panel (`facet_grid()` will e.g. also return the facetting variables associated with each panel). Let's make a function that defines a duplicate layout:
```{r}
layout <- function(data, params) {
data.frame(PANEL = c(1L, 2L), SCALE_X = 1L, SCALE_Y = 1L)
}
```
This is quite simple as the facetting should just define two panels irrespectively of the input data and parameters.
### Mapping data into panels
In order for ggplot2 to know which data should go where it needs the data to be assigned to a panel. The purpose of the mapping step is to assign a `PANEL` column to the layer data identifying which panel it belongs to.
```{r}
mapping <- function(data, layout, params) {
if (plyr::empty(data)) {
return(cbind(data, PANEL = integer(0)))
}
rbind(
cbind(data, PANEL = 1L),
cbind(data, PANEL = 2L)
)
}
```
here we first investigate whether we have gotten an empty `data.frame` and if not we duplicate the data and assign the original data to the first panel and the new data to the second panel.
### Laying out the panels
While the two functions above have been deceivingly simple, this last one is going to take some more work. Our goal is to draw two panels beside (or above) each other with axes etc.
```{r}
render <- function(panels, layout, x_scales, y_scales, ranges, coord, data,
theme, params) {
# Place panels according to settings
if (params$horizontal) {
# Put panels in matrix and convert to a gtable
panels <- matrix(panels, ncol = 2)
panel_table <- gtable::gtable_matrix("layout", panels,
widths = unit(c(1, 1), "null"), heights = unit(1, "null"), clip = "on")
# Add spacing according to theme
panel_spacing <- if (is.null(theme$panel.spacing.x)) {
theme$panel.spacing
} else {
theme$panel.spacing.x
}
panel_table <- gtable::gtable_add_col_space(panel_table, panel_spacing)
} else {
panels <- matrix(panels, ncol = 1)
panel_table <- gtable::gtable_matrix("layout", panels,
widths = unit(1, "null"), heights = unit(c(1, 1), "null"), clip = "on")
panel_spacing <- if (is.null(theme$panel.spacing.y)) {
theme$panel.spacing
} else {
theme$panel.spacing.y
}
panel_table <- gtable::gtable_add_row_space(panel_table, panel_spacing)
}
# Name panel grobs so they can be found later
panel_table$layout$name <- paste0("panel-", c(1, 2))
# Construct the axes
axes <- render_axes(ranges[1], ranges[1], coord, theme,
transpose = TRUE)
# Add axes around each panel
panel_pos_h <- panel_cols(panel_table)$l
panel_pos_v <- panel_rows(panel_table)$t
axis_width_l <- unit(grid::convertWidth(
grid::grobWidth(axes$y$left[[1]]), "cm", TRUE), "cm")
axis_width_r <- unit(grid::convertWidth(
grid::grobWidth(axes$y$right[[1]]), "cm", TRUE), "cm")
## We do it reverse so we don't change the position of panels when we add axes
for (i in rev(panel_pos_h)) {
panel_table <- gtable::gtable_add_cols(panel_table, axis_width_r, i)
panel_table <- gtable::gtable_add_grob(panel_table,
rep(axes$y$right, length(panel_pos_v)), t = panel_pos_v, l = i + 1,
clip = "off")
panel_table <- gtable::gtable_add_cols(panel_table, axis_width_l, i - 1)
panel_table <- gtable::gtable_add_grob(panel_table,
rep(axes$y$left, length(panel_pos_v)), t = panel_pos_v, l = i,
clip = "off")
}
## Recalculate as gtable has changed
panel_pos_h <- panel_cols(panel_table)$l
panel_pos_v <- panel_rows(panel_table)$t
axis_height_t <- unit(grid::convertHeight(
grid::grobHeight(axes$x$top[[1]]), "cm", TRUE), "cm")
axis_height_b <- unit(grid::convertHeight(
grid::grobHeight(axes$x$bottom[[1]]), "cm", TRUE), "cm")
for (i in rev(panel_pos_v)) {
panel_table <- gtable::gtable_add_rows(panel_table, axis_height_b, i)
panel_table <- gtable::gtable_add_grob(panel_table,
rep(axes$x$bottom, length(panel_pos_h)), t = i + 1, l = panel_pos_h,
clip = "off")
panel_table <- gtable::gtable_add_rows(panel_table, axis_height_t, i - 1)
panel_table <- gtable::gtable_add_grob(panel_table,
rep(axes$x$top, length(panel_pos_h)), t = i, l = panel_pos_h,
clip = "off")
}
panel_table
}
```
### Assembling the Facet class
Usually all methods are defined within the class definition in the same way as is done for `Geom` and `Stat`. Here we have split it out so we could go through each in turn. All that remains is to assign our functions to the correct methods as well as making a constructor
```{r}
# Constructor: shrink is required to govern whether scales are trained on
# Stat-transformed data or not.
facet_duplicate <- function(horizontal = TRUE, shrink = TRUE) {
ggproto(NULL, FacetDuplicate,
shrink = shrink,
params = list(
horizontal = horizontal
)
)
}
FacetDuplicate <- ggproto("FacetDuplicate", Facet,
compute_layout = layout,
map_data = mapping,
draw_panels = render
)
```
Now with everything assembled, lets test it out:
```{r}
p <- ggplot(mtcars, aes(x = hp, y = mpg)) + geom_point()
p
p + facet_duplicate()
```
### Doing more with facets
The example above was pretty useless and we'll now try to expand on it to add some actual usability. We are going to make a facetting that adds panels with y-transformed axes:
```{r}
library(scales)
facet_trans <- function(trans, horizontal = TRUE, shrink = TRUE) {
ggproto(NULL, FacetTrans,
shrink = shrink,
params = list(
trans = scales::as.trans(trans),
horizontal = horizontal
)
)
}
FacetTrans <- ggproto("FacetTrans", Facet,
# Almost as before but we want different y-scales for each panel
compute_layout = function(data, params) {
data.frame(PANEL = c(1L, 2L), SCALE_X = 1L, SCALE_Y = c(1L, 2L))
},
# Same as before
map_data = function(data, layout, params) {
if (plyr::empty(data)) {
return(cbind(data, PANEL = integer(0)))
}
rbind(
cbind(data, PANEL = 1L),
cbind(data, PANEL = 2L)
)
},
# This is new. We create a new scale with the defined transformation
init_scales = function(layout, x_scale = NULL, y_scale = NULL, params) {
scales <- list()
if (!is.null(x_scale)) {
scales$x <- plyr::rlply(max(layout$SCALE_X), x_scale$clone())
}
if (!is.null(y_scale)) {
y_scale_orig <- y_scale$clone()
y_scale_new <- y_scale$clone()
y_scale_new$trans <- params$trans
# Make sure that oob values are kept
y_scale_new$oob <- function(x, ...) x
scales$y <- list(y_scale_orig, y_scale_new)
}
scales
},
# We must make sure that the second scale is trained on transformed data
train_scales = function(x_scales, y_scales, layout, data, params) {
# Transform data for second panel prior to scale training
if (!is.null(y_scales)) {
data <- lapply(data, function(layer_data) {
match_id <- match(layer_data$PANEL, layout$PANEL)
y_vars <- intersect(y_scales[[1]]$aesthetics, names(layer_data))
trans_scale <- layer_data$PANEL == 2L
for (i in y_vars) {
layer_data[trans_scale, i] <- y_scales[[2]]$transform(layer_data[trans_scale, i])
}
layer_data
})
}
Facet$train_scales(x_scales, y_scales, layout, data, params)
},
# this is where we actually modify the data. It cannot be done in $map_data as that function
# doesn't have access to the scales
finish_data = function(data, layout, x_scales, y_scales, params) {
match_id <- match(data$PANEL, layout$PANEL)
y_vars <- intersect(y_scales[[1]]$aesthetics, names(data))
trans_scale <- data$PANEL == 2L
for (i in y_vars) {
data[trans_scale, i] <- y_scales[[2]]$transform(data[trans_scale, i])
}
data
},
# A few changes from before to accommodate that axes are now not duplicate of each other
# We also add a panel strip to annotate the different panels
draw_panels = function(panels, layout, x_scales, y_scales, ranges, coord,
data, theme, params) {
# Place panels according to settings
if (params$horizontal) {
# Put panels in matrix and convert to a gtable
panels <- matrix(panels, ncol = 2)
panel_table <- gtable::gtable_matrix("layout", panels,
widths = unit(c(1, 1), "null"), heights = unit(1, "null"), clip = "on")
# Add spacing according to theme
panel_spacing <- if (is.null(theme$panel.spacing.x)) {
theme$panel.spacing
} else {
theme$panel.spacing.x
}
panel_table <- gtable::gtable_add_col_space(panel_table, panel_spacing)
} else {
panels <- matrix(panels, ncol = 1)
panel_table <- gtable::gtable_matrix("layout", panels,
widths = unit(1, "null"), heights = unit(c(1, 1), "null"), clip = "on")
panel_spacing <- if (is.null(theme$panel.spacing.y)) {
theme$panel.spacing
} else {
theme$panel.spacing.y
}
panel_table <- gtable::gtable_add_row_space(panel_table, panel_spacing)
}
# Name panel grobs so they can be found later
panel_table$layout$name <- paste0("panel-", c(1, 2))
# Construct the axes
axes <- render_axes(ranges[1], ranges, coord, theme,
transpose = TRUE)
# Add axes around each panel
grobWidths <- function(x) {
unit(vapply(x, function(x) {
grid::convertWidth(
grid::grobWidth(x), "cm", TRUE)
}, numeric(1)), "cm")
}
panel_pos_h <- panel_cols(panel_table)$l
panel_pos_v <- panel_rows(panel_table)$t
axis_width_l <- grobWidths(axes$y$left)
axis_width_r <- grobWidths(axes$y$right)
## We do it reverse so we don't change the position of panels when we add axes
for (i in rev(seq_along(panel_pos_h))) {
panel_table <- gtable::gtable_add_cols(panel_table, axis_width_r[i], panel_pos_h[i])
if (params$horizontal) {
panel_table <- gtable::gtable_add_grob(panel_table,
rep(axes$y$right[i], length(panel_pos_v)), t = panel_pos_v, l = panel_pos_h[i] + 1,
clip = "off")
} else {
panel_table <- gtable::gtable_add_grob(panel_table,
rep(axes$y$right, length(panel_pos_v)), t = panel_pos_v, l = panel_pos_h[i] + 1,
clip = "off")
}
panel_table <- gtable::gtable_add_cols(panel_table, axis_width_l[i], panel_pos_h[i] - 1)
if (params$horizontal) {
panel_table <- gtable::gtable_add_grob(panel_table,
rep(axes$y$left[i], length(panel_pos_v)), t = panel_pos_v, l = panel_pos_h[i],
clip = "off")
} else {
panel_table <- gtable::gtable_add_grob(panel_table,
rep(axes$y$left, length(panel_pos_v)), t = panel_pos_v, l = panel_pos_h[i],
clip = "off")
}
}
## Recalculate as gtable has changed
panel_pos_h <- panel_cols(panel_table)$l
panel_pos_v <- panel_rows(panel_table)$t
axis_height_t <- unit(grid::convertHeight(
grid::grobHeight(axes$x$top[[1]]), "cm", TRUE), "cm")
axis_height_b <- unit(grid::convertHeight(
grid::grobHeight(axes$x$bottom[[1]]), "cm", TRUE), "cm")
for (i in rev(panel_pos_v)) {
panel_table <- gtable::gtable_add_rows(panel_table, axis_height_b, i)
panel_table <- gtable::gtable_add_grob(panel_table,
rep(axes$x$bottom, length(panel_pos_h)), t = i + 1, l = panel_pos_h,
clip = "off")
panel_table <- gtable::gtable_add_rows(panel_table, axis_height_t, i - 1)
panel_table <- gtable::gtable_add_grob(panel_table,
rep(axes$x$top, length(panel_pos_h)), t = i, l = panel_pos_h,
clip = "off")
}
# Add strips
strips <- render_strips(
x = data.frame(name = c("Original", paste0("Transformed (", params$trans$name, ")"))),
labeller = label_value, theme = theme)
panel_pos_h <- panel_cols(panel_table)$l
panel_pos_v <- panel_rows(panel_table)$t
strip_height <- unit(grid::convertHeight(
grid::grobHeight(strips$x$top[[1]]), "cm", TRUE), "cm")
for (i in rev(seq_along(panel_pos_v))) {
panel_table <- gtable::gtable_add_rows(panel_table, strip_height, panel_pos_v[i] - 1)
if (params$horizontal) {
panel_table <- gtable::gtable_add_grob(panel_table, strips$x$top,
t = panel_pos_v[i], l = panel_pos_h, clip = "off")
} else {
panel_table <- gtable::gtable_add_grob(panel_table, strips$x$top[i],
t = panel_pos_v[i], l = panel_pos_h, clip = "off")
}
}
panel_table
}
)
```
As is very apparent, the `draw_panel` method can become very unwieldy once it begins to take multiple possibilities into account. The fact that we want to support both horizontal and vertical layout leads to a lot of if/else blocks in the above code. In general, this is the big challenge when writing facet extensions so be prepared to be very meticulous when writing these methods.
Enough talk - lets see if our new and powerful facetting extension works:
```{r}
ggplot(mtcars, aes(x = hp, y = mpg)) + geom_point() + facet_trans('sqrt')
```
## Extending existing facet function
As the rendering part of a facet class is often the difficult development step, it is possible to piggyback on the existing facetting classes to achieve a range of new facettings. Below we will subclass `facet_wrap()` to make a `facet_bootstrap()` class that splits the input data into a number of panels at random.
```{r}
facet_bootstrap <- function(n = 9, prop = 0.2, nrow = NULL, ncol = NULL,
scales = "fixed", shrink = TRUE, strip.position = "top") {
facet <- facet_wrap(~.bootstrap, nrow = nrow, ncol = ncol, scales = scales,
shrink = shrink, strip.position = strip.position)
facet$params$n <- n
facet$params$prop <- prop
ggproto(NULL, FacetBootstrap,
shrink = shrink,
params = facet$params
)
}
FacetBootstrap <- ggproto("FacetBootstrap", FacetWrap,
compute_layout = function(data, params) {
id <- seq_len(params$n)
dims <- wrap_dims(params$n, params$nrow, params$ncol)
layout <- data.frame(PANEL = factor(id))
if (params$as.table) {
layout$ROW <- as.integer((id - 1L) %/% dims[2] + 1L)
} else {
layout$ROW <- as.integer(dims[1] - (id - 1L) %/% dims[2])
}
layout$COL <- as.integer((id - 1L) %% dims[2] + 1L)
layout <- layout[order(layout$PANEL), , drop = FALSE]
rownames(layout) <- NULL
# Add scale identification
layout$SCALE_X <- if (params$free$x) id else 1L
layout$SCALE_Y <- if (params$free$y) id else 1L
cbind(layout, .bootstrap = id)
},
map_data = function(data, layout, params) {
if (is.null(data) || nrow(data) == 0) {
return(cbind(data, PANEL = integer(0)))
}
n_samples <- round(nrow(data) * params$prop)
new_data <- lapply(seq_len(params$n), function(i) {
cbind(data[sample(nrow(data), n_samples), , drop = FALSE], PANEL = i)
})
do.call(rbind, new_data)
}
)
ggplot(diamonds, aes(carat, price)) +
geom_point(alpha = 0.1) +
facet_bootstrap(n = 9, prop = 0.05)
```
What we are doing above is to intercept the `compute_layout` and `map_data` methods and instead of dividing the data by a variable we randomly assigns rows to a panel based on the sampling parameters (`n` determines the number of panels, `prop` determines the proportion of data in each panel). It is important here that the layout returned by `compute_layout` is a valid layout for `FacetWrap` as we are counting on the `draw_panel` method from `FacetWrap` to do all the work for us. Thus if you want to subclass FacetWrap or FacetGrid, make sure you understand the nature of their layout specification.
### Exercises
1. Rewrite FacetTrans to take a vector of transformations and create an additional panel for each transformation.
2. Based on the FacetWrap implementation rewrite FacetTrans to take the strip.placement theme setting into account.
3. Think about which caveats there are in FacetBootstrap specifically related to adding multiple layers with the same data.